Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats

Author:

Shi Rongfeng,Jin Yinpeng,Cao Chuanwu,Han Shilong,Shao Xiaowen,Meng Lingyu,Cheng Jie,Zhang Meiling,Zheng Jiayi,Xu Jun,Li Maoquan

Abstract

Abstract Background Diabetic foot ulcer (DFU) is an intractable diabetic complication. Patients suffering from diabetes mellitus (DM) frequently present with infected DFUs. In this study, a wound healing model on diabetic rat foot was established to mimic the pathophysiology of clinical patients who suffer from DFUs. Our study aimed to explore the localization of human adipose-derived stem cells (hADSCs) and the role of these cells in the repair of foot ulcerated tissue in diabetic rats, and thus to estimate the possibilities of adipose-derived stem cells for diabetic wound therapy. Method Sprague–Dawley rats were used to establish diabetic models by streptozotocin injection. A full-thickness foot dorsal skin wound was created by a 5 mm skin biopsy punch and a Westcott scissor. These rats were randomly divided into two groups: the hADSC-treated group and the phosphate-buffered saline (PBS) control group. The hADSC or PBS treatment was delivered through the left femoral vein of rats. We evaluated the localization of hADSCs with fluorescence immunohistochemistry and the ulcer area and ulcerative histology were detected dynamically. Result The hADSCs had a positive effect on the full-thickness foot dorsal skin wound in diabetic rats with a significantly reduced ulcer area at day 15. More granulation tissue formation, angiogenesis, cellular proliferation, and higher levels of growth factors expression were also detected in wound beds. Conclusions Our data suggest that hADSC transplantation has the potential to promote foot wound healing in diabetic rats, and transplantation of exogenous stem cells may be suitable for clinical application in the treatment of DFU.

Funder

Natural Science Foundation of China

Overseas interdiscipline programme for excellent postgraduate of Tongji University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3