Author:
Achan Jane,Barry Aïssata,Leroy Didier,Kamara George,Duparc Stephan,Kaszubska Wiweka,Gandhi Preetam,Buffet Bénédicte,Tshilab Patrick,Ogutu Bernhards,Taylor Terrie,Krishna Sanjeev,Richardson Naomi,Ramachandruni Hanu,Rietveld Hans
Abstract
Abstract
Background
Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies.
Target product profile
Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings.
Conclusion
Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Publisher
Springer Science and Business Media LLC
Reference112 articles.
1. Burrows JN, Duparc S, Gutteridge WE, van Huijsduijnen RH, Kaszubska W, Macintyre F, et al. New developments in anti-malarial target candidate and product profiles. Malar J. 2017;16:26.
2. WHO. Strategy to respond to antimalarial drug resistance in Africa. Geneva: World Health Organization; 2022. https://www.who.int/publications/i/item/9789240060265. Accessed 24 Mar 2023.
3. WHO. World malaria report. Geneva: World Health Organization; 2023. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023. Accessed 7 Feb 2024.
4. Kotepui M, Kotepui KU, Milanez GD, Masangkay FR. Prevalence of severe Plasmodium knowlesi infection and risk factors related to severe complications compared with non-severe P. knowlesi and severe P. falciparum malaria: a systematic review and meta-analysis. Infect Dis Poverty. 2020;9:106.
5. Kojom Foko LP, Arya A, Sharma A, Singh V. Epidemiology and clinical outcomes of severe Plasmodium vivax malaria in India. J Infect. 2021;82:231–46.