Artificial intelligence for the prediction of acute kidney injury during the perioperative period: systematic review and Meta-analysis of diagnostic test accuracy

Author:

Zhang Hanfei,Wang Amanda Y.,Wu Shukun,Ngo Johnathan,Feng Yunlin,He Xin,Zhang Yingfeng,Wu Xingwei,Hong Daqing

Abstract

Abstract Background Acute kidney injury (AKI) is independently associated with morbidity and mortality in a wide range of surgical settings. Nowadays, with the increasing use of electronic health records (EHR), advances in patient information retrieval, and cost reduction in clinical informatics, artificial intelligence is increasingly being used to improve early recognition and management for perioperative AKI. However, there is no quantitative synthesis of the performance of these methods. We conducted this systematic review and meta-analysis to estimate the sensitivity and specificity of artificial intelligence for the prediction of acute kidney injury during the perioperative period. Methods Pubmed, Embase, and Cochrane Library were searched to 2nd October 2021. Studies presenting diagnostic performance of artificial intelligence in the early detection of perioperative acute kidney injury were included. True positives, false positives, true negatives and false negatives were pooled to collate specificity and sensitivity with 95% CIs and results were portrayed in forest plots. The risk of bias of eligible studies was assessed using the PROBAST tool. Results Nineteen studies involving 304,076 patients were included. Quantitative random-effects meta-analysis using the Rutter and Gatsonis hierarchical summary receiver operating characteristics (HSROC) model revealed pooled sensitivity, specificity, and diagnostic odds ratio of 0.77 (95% CI: 0.73 to 0.81),0.75 (95% CI: 0.71 to 0.80), and 10.7 (95% CI 8.5 to 13.5), respectively. Threshold effect was found to be the only source of heterogeneity, and there was no evidence of publication bias. Conclusions Our review demonstrates the promising performance of artificial intelligence for early prediction of perioperative AKI. The limitations of lacking external validation performance and being conducted only at a single center should be overcome. Trial registration This study was not registered with PROSPERO.

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in critical care nephrology through artificial intelligence;Current Opinion in Critical Care;2024-09-02

2. Application of Machine Learning in Predicting Perioperative Outcomes in Patients with Cancer: A Narrative Review for Clinicians;Current Oncology;2024-05-11

3. Neueste Entwicklungen bei der akuten Nierenschädigung;Medizinische Klinik - Intensivmedizin und Notfallmedizin;2024-04-29

4. Künstliche Intelligenz in der Intensivmedizin;Medizinische Klinik - Intensivmedizin und Notfallmedizin;2024-03-28

5. Künstliche Intelligenz und akute Nierenschädigung;Medizinische Klinik - Intensivmedizin und Notfallmedizin;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3