The effect of enhanced structure in the posterior segment of clear aligners during anterior retraction: a three-dimensional finite element and experimental model analysis

Author:

Jin Xiaohan,Tian Xue,Lee Zhi Hui Victoria,Zheng Yikan,Song Jinlin,Han XianglongORCID

Abstract

Abstract Background Mesial tipping of posterior teeth occurs frequently during space closure with clear aligners (CAs). In this study, we proposed a new modification of CA by localized thickening of the aligner to form the enhanced structure and investigate its biomechanical effect during anterior retraction. Methods Two methods were employed in this study. First, a finite element (FE) model was constructed, which included alveolar bone, the first premolars extracted maxillary dentition, periodontal ligaments (PDL), attachments and aligners. The second method involved an experimental model—a measuring device using multi-axis transducers and vacuum thermoforming aligners. Two groups were formed: (1) The control group used common CAs and (2) the enhanced structure group used partially thickened CAs. Results FE model revealed that the enhanced structure improved the biomechanics during anterior retraction. Specifically, the second premolar, which had a smaller PDL area, experienced a smaller protraction force and moment, making it less likely to tip mesially. In the same vein, the molars could resist movement due to their larger PDL area even though they were applied larger forces. The resultant force of the posterior tooth was closer to the center of resistance, reducing the tipping moment. The canine was applied a larger retraction force and moment, resulting in sufficient retraction of anterior teeth. The experimental model demonstrated a similar trend in force variation as the FE model. Conclusions Enhanced structure allowed force distribution more in accordance with optimal principles of biomechanics during the extraction space closure while permitting less mesial tipping and anchorage loss of posterior teeth and better retraction of anterior teeth. Thus, enhanced structure alleviated the roller coaster effect associated with extraction cases and offered a new possibility for anchorage reinforcement in clear aligner therapy.

Funder

EA Medical Center Device Technologies Co., Ltd.

West China Hospital of Stomatology

Ministry of Science and Technology of the People's Republic of China

Dazhou Science and Technology Bureau

Chongqing Municipal Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3