Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice

Author:

Perego Carlo,Fumagalli Stefano,De Simoni Maria-Grazia

Abstract

Abstract Background Emerging evidence indicates that, similarly to what happens for peripheral macrophages, microglia can express different phenotypes depending on microenvironmental signals. In spite of the large literature on inflammation after ischemia, information on M/M phenotype marker expression, their colocalization and temporal evolution in the injured brain is lacking. The present study investigates the presence of microglia/macrophage phenotype markers, their temporal expression, whether they are concomitantly expressed by the same subpopulation, or they are expressed at distinct phases or locations in relation to the ischemic lesion. Methods Volume of ischemic lesion, neuronal counts and TUNEL staining were assessed in C57Bl/6 mice at 6-12-24-48 h and 7d after permanent occlusion of the middle cerebral artery. At the same time points, the expression, distribution in the lesioned area, association with a definite morphology and coexpression of the microglia/macrophage markers CD11b, CD45, CD68, Ym1, CD206 were assessed by immunostaining and confocal microscopy. Results The results show that: 1) the ischemic lesion induces the expression of selected microglia/macrophage markers that develop over time, each with a specific pattern; 2) each marker has a given localization in the lesioned area with no apparent changes during time, with the exception of CD68 that is confined in the border zone of the lesion at early times but it greatly increases and invades the ischemic core at 7d; 3) while CD68 is expressed in both ramified and globular CD11b cells, Ym1 and CD206 are exclusively expressed by globular CD11b cells. Conclusions These data show that the ischemic lesion is accompanied by activation of specific microglia/macrophage phenotype that presents distinctive spatial and temporal features. These different states of microglia/macrophages reflect the complexity of these cells and their ability to differentiate towards a multitude of phenotypes depending on the surrounding micro-environmental signals that can change over time. The data presented in this study provide a basis for understanding this complex response and for developing strategies resulting in promotion of a protective inflammatory phenotype.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3