In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice

Author:

Schwarzmaier Susanne M,Zimmermann Ricarda,McGarry Niamh B,Trabold Raimund,Kim Seong-Woong,Plesnila Nikolaus

Abstract

Abstract Background Leukocytes are believed to be involved in delayed cell death following traumatic brain injury (TBI). However, data demonstrating that blood-borne inflammatory cells are present in the injured brain prior to the onset of secondary brain damage have been inconclusive. We therefore investigated both the interaction between leukocytes and the cerebrovascular endothelium using in vivo imaging and the accumulation of leukocytes in the penumbra following experimentally induced TBI. Methods Experimental TBI was induced in C57/Bl6 mice (n = 42) using the controlled cortical impact (CCI) injury model, and leukocyte-endothelium interactions (LEI) were quantified using both intravital fluorescence microscopy (IVM) of superficial vessels and 2-photon microscopy of cortical vessels for up to 14 h post-CCI. In a separate experimental group, leukocyte accumulation and secondary lesion expansion were analyzed in mice that were sacrificed 15 min, 2, 6, 12, 24, or 48 h after CCI (n = 48). Finally, leukocyte adhesion was blocked with anti-CD18 antibodies, and the effects on LEI and secondary lesion expansion were determined 16 (n = 12) and 24 h (n = 21), respectively, following TBI. Results One hour after TBI leukocytes and leukocyte-platelet aggregates started to roll on the endothelium of pial venules, whereas no significant LEI were observed in pial arterioles or in sham-operated mice. With a delay of >4 h, leukocytes and aggregates did also firmly adhere to the venular endothelium. In deep cortical vessels (250 μm) LEIs were much less pronounced. Transmigration of leukocytes into the brain parenchyma only became significant after the tissue became necrotic. Treatment with anti-CD18 antibodies reduced adhesion by 65%; however, this treatment had no effect on secondary lesion expansion. Conclusions LEI occurred primarily in pial venules, whereas little or no LEI occurred in arterioles or deep cortical vessels. Inhibiting LEI did not affect secondary lesion expansion. Importantly, the majority of migrating leukocytes entered the injured brain parenchyma only after the tissue became necrotic. Our results therefore suggest that neither intravascular leukocyte adhesion nor the migration of leukocytes into cerebral tissue play a significant role in the development of secondary lesion expansion following TBI.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3