Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia

Author:

Pérez-Álvarez Maria Jose,Maza Maria del Carmen,Anton Marta,Ordoñez Lara,Wandosell Francisco

Abstract

Abstract Background Estradiol has been shown to exert neuroprotective effects in several neurodegenerative conditions, including cerebral ischemia. The presence of this hormone prior to ischemia attenuates the damage associated with such events in a rodent model (middle cerebral artery occlusion (MCAO)), although its therapeutic value when administered post-ischemia has not been assessed. Hence, we evaluated the effects of estradiol treatment after permanent MCAO (pMCAO) was induced in rats, studying the PI3K/AKT/GSK3/β-catenin survival pathway and the activation of SAPK-JNK in two brain areas differently affected by pMCAO: the cortex and hippocampus. In addition, we analyzed the effect of estradiol on the glial response to injury. Methods Male rats were subjected to pMCAO and estradiol (0.04 mg/kg) was administered 6, 24, and 48 h after surgery. The animals were sacrificed 6 h after the last treatment, and brain damage was evaluated by immunohistochemical quantification of ‘reactive gliosis’ using antibodies against GFAP and Iba1. In addition, Akt, phospho-AktSer473, phospho-AktThr308, GSK3, phospho-GSK3Ser21/9, β-catenin, SAPK-JNK, and pSAPK-JNKThr183/Tyr185 levels were determined in western blots of the ipsilateral cerebral cortex and hippocampus, and regional differences in neuronal phospho-Akt expression were determined by immunohistochemistry. Results The increases in the percentage of GFAP- (5.25-fold) and Iba1- (1.8-fold) labeled cells in the cortex and hippocampus indicate that pMCAO induced ‘reactive gliosis’. This effect was prevented by post-ischemic estradiol treatment; diminished the number of these cells to those comparable with control animals. pMCAO down-regulated the PI3K/AkT/GSK3/β-catenin survival pathway to different extents in the cortex and hippocampus, the activity of which was restored by estradiol treatment more efficiently in the cerebral cortex (the most affected region) than in the hippocampus. No changes in the phosphorylation of SAPK-JNK were observed 54 h after inducing pMCAO, whereas pMCAO did significantly decrease the phospho-AktSer473 in neurons, an effect that was reversed by estradiol. Conclusion The present study demonstrates that post-pMCAO estradiol treatment attenuates ischemic injury in both neurons and glia, events in which the PI3K/AKT/GSK3/β-catenin pathway is at least partly involved. These findings indicate that estradiol is a potentially useful treatment to enhance recovery after human ischemic stroke.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3