Histogram analysis of multiple diffusion models for predicting advanced non-small cell lung cancer response to chemoimmunotherapy

Author:

Zheng Yu,Zhou Liang,Huang Wenjing,Han Na,Zhang JingORCID

Abstract

Abstract Background There is an urgent need to find a reliable and effective imaging method to evaluate the therapeutic efficacy of immunochemotherapy in advanced non-small cell lung cancer (NSCLC). This study aimed to investigate the capability of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) histogram analysis based on different region of interest (ROI) selection methods for predicting treatment response to chemoimmunotherapy in advanced NSCLC. Methods Seventy-two stage III or IV NSCLC patients who received chemoimmunotherapy were enrolled in this study. IVIM and DKI were performed before treatment. The patients were classified as responders group and non-responders group according to the Response Evaluation Criteria in Solid Tumors 1.1. The histogram parameters of ADC, Dslow, Dfast, f, Dk and K were measured using whole tumor volume ROI and single slice ROI analysis methods. Variables with statistical differences would be included in stepwise logistic regression analysis to determine independent parameters, by which the combined model was also established. And the receiver operating characteristic curve (ROC) were used to evaluate the prediction performance of histogram parameters and the combined model. Results ADC, Dslow, Dk histogram metrics were significantly lower in the responders group than in the non-responders group, while the histogram parameters of f were significantly higher in the responders group than in the non-responders group (all P < 0.05). The mean value of each parameter was better than or equivalent to other histogram metrics, where the mean value of f obtained from whole tumor and single slice both had the highest AUC (AUC = 0.886 and 0.812, respectively) compared to other single parameters. The combined model improved the diagnostic efficiency with an AUC of 0.968 (whole tumor) and 0.893 (single slice), respectively. Conclusions Whole tumor volume ROI demonstrated better diagnostic ability than single slice ROI analysis, which indicated whole tumor histogram analysis of IVIM and DKI hold greater potential than single slice ROI analysis to be a promising tool of predicting therapeutic response to chemoimmunotherapy in advanced NSCLC at initial state.

Funder

National Natural Science Foundation of China

Science and Technology Project of Gansu

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3