Real-time automatic prediction of treatment response to transcatheter arterial chemoembolization in patients with hepatocellular carcinoma using deep learning based on digital subtraction angiography videos

Author:

Zhang Lu,Jiang Yicheng,Jin Zhe,Jiang Wenting,Zhang Bin,Wang Changmiao,Wu Lingeng,Chen Luyan,Chen Qiuying,Liu Shuyi,You Jingjing,Mo Xiaokai,Liu Jing,Xiong Zhiyuan,Huang Tao,Yang Liyang,Wan Xiang,Wen Ge,Han Xiao Guang,Fan Weijun,Zhang ShuixingORCID

Abstract

Abstract Background Transcatheter arterial chemoembolization (TACE) is the mainstay of therapy for intermediate-stage hepatocellular carcinoma (HCC); yet its efficacy varies between patients with the same tumor stage. Accurate prediction of TACE response remains a major concern to avoid overtreatment. Thus, we aimed to develop and validate an artificial intelligence system for real-time automatic prediction of TACE response in HCC patients based on digital subtraction angiography (DSA) videos via a deep learning approach. Methods This retrospective cohort study included a total of 605 patients with intermediate-stage HCC who received TACE as their initial therapy. A fully automated framework (i.e., DSA-Net) contained a U-net model for automatic tumor segmentation (Model 1) and a ResNet model for the prediction of treatment response to the first TACE (Model 2). The two models were trained in 360 patients, internally validated in 124 patients, and externally validated in 121 patients. Dice coefficient and receiver operating characteristic curves were used to evaluate the performance of Models 1 and 2, respectively. Results Model 1 yielded a Dice coefficient of 0.75 (95% confidence interval [CI]: 0.73–0.78) and 0.73 (95% CI: 0.71–0.75) for the internal validation and external validation cohorts, respectively. Integrating the DSA videos, segmentation results, and clinical variables (mainly demographics and liver function parameters), Model 2 predicted treatment response to first TACE with an accuracy of 78.2% (95%CI: 74.2–82.3), sensitivity of 77.6% (95%CI: 70.7–84.0), and specificity of 78.7% (95%CI: 72.9–84.1) for the internal validation cohort, and accuracy of 75.1% (95% CI: 73.1–81.7), sensitivity of 50.5% (95%CI: 40.0–61.5), and specificity of 83.5% (95%CI: 79.2–87.7) for the external validation cohort. Kaplan-Meier curves showed a significant difference in progression-free survival between the responders and non-responders divided by Model 2 (p = 0.002). Conclusions Our multi-task deep learning framework provided a real-time effective approach for decoding DSA videos and can offer clinical-decision support for TACE treatment in intermediate-stage HCC patients in real-world settings.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3