Nomograms integrating CT radiomic and deep learning signatures to predict overall survival and progression-free survival in NSCLC patients treated with chemotherapy

Author:

Chang Runsheng,Qi ShouliangORCID,Wu Yanan,Yue Yong,Zhang Xiaoye,Qian Wei

Abstract

Abstract Objectives This study aims to establish nomograms to accurately predict the overall survival (OS) and progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC) who received chemotherapy alone as the first-line treatment. Materials and methods In a training cohort of 121 NSCLC patients, radiomic features were extracted, selected from intra- and peri-tumoral regions, and used to build signatures (S1 and S2) using a Cox regression model. Deep learning features were obtained from three convolutional neural networks and utilized to build signatures (S3, S4, and S5) that were stratified into over- and under-expression subgroups for survival risk using X-tile. After univariate and multivariate Cox regression analyses, a nomogram incorporating the tumor, node, and metastasis (TNM) stages, radiomic signature, and deep learning signature was established to predict OS and PFS, respectively. The performance was validated using an independent cohort (61 patients). Results TNM stages, S2 and S3 were identified as the significant prognosis factors for both OS and PFS; S2 (OS: (HR (95%), 2.26 (1.40–3.67); PFS: (HR (95%), 2.23 (1.36–3.65)) demonstrated the best ability in discriminating patients with over- and under-expression. For the OS nomogram, the C-index (95% CI) was 0.74 (0.70–0.79) and 0.72 (0.67–0.78) in the training and validation cohorts, respectively; for the PFS nomogram, the C-index (95% CI) was 0.71 (0.68–0.81) and 0.72 (0.66–0.79). The calibration curves for the 3- and 5-year OS and PFS were in acceptable agreement between the predicted and observed survival. The established nomogram presented a higher overall net benefit than the TNM stage for predicting both OS and PFS. Conclusion By integrating the TNM stage, CT radiomic signature, and deep learning signatures, the established nomograms can predict the individual prognosis of NSCLC patients who received chemotherapy. The integrated nomogram has the potential to improve the individualized treatment and precise management of NSCLC patients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3