Accurate prediction of acute pancreatitis severity based on genome-wide cell free DNA methylation profiles

Author:

Sun Hong-Wei,Dai Sheng-Jie,Kong Hong-Ru,Fan Jie-Xiang,Yang Fang-Yuan,Dai Ju-Qing,Jin Yue-Peng,Yu Guan-Zhen,Chen Bi-Cheng,Shi Ke-QingORCID

Abstract

Abstract Background Patients with severe acute pancreatitis (SAP) have a high mortality, thus early diagnosis and interventions are critical for improving survival. However, conventional tests are limited in acute pancreatitis (AP) stratification. We aimed to assess AP severity by integrating the informative clinical measurements with cell free DNA (cfDNA) methylation markers. Methods One hundred and seventy-five blood samples were collected from 61 AP patients at multiple time points, plus 24 samples from healthy individuals. Genome-wide cfDNA methylation profiles of all samples were characterized with reduced representative bisulfite sequencing. Clinical blood tests covering 93 biomarkers were performed on AP patients within 24 h. SAP predication models were built based on cfDNA methylation and conventional blood biomarkers separately and in combination. Results We identified 565 and 59 cfDNA methylation markers informative for acute pancreatitis and its severity. These markers were used to develop prediction models for AP and SAP with area under the receiver operating characteristic of 0.92 and 0.81, respectively. Twelve blood biomarkers were systematically screened for a predictor of SAP with a sensitivity of 87.5% for SAP, and a specificity of 100% in mild acute pancreatitis, significantly higher than existing blood tests. An expanded model integrating 12 conventional blood biomarkers with 59 cfDNA methylation markers further improved the SAP prediction sensitivity to 92.2%. Conclusions These findings have demonstrated that accurate prediction of SAP by the integration of conventional and novel blood molecular markers, paving the way for early and effective SAP intervention through a non-invasive rapid diagnostic test.

Funder

national natural sciences foundation of china

key projects of wenzhou science and technology bureau

provinces and ministries co-contribution of zhejiang, china

The Key Research and Development Program of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3