Genome-wide DNA methylation analysis of extreme phenotypes in the identification of novel epigenetic modifications in diabetic retinopathy

Author:

Yang Shaopeng,Guo Xiao,Cheng Weijing,Seth Ishith,Bulloch Gabriella,Chen Yifan,Shang Xianwen,Zhu Zhuoting,Huang Wenyong,Wang WeiORCID

Abstract

Abstract Background Aberrant epigenetic modifications such as DNA methylation may contribute to the pathogenesis of DR. We aimed at elucidating the role of novel DNA methylation modifications in diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM) using an extreme phenotypic design. Methods/results Two consecutive studies were conducted. A cross-sectional study using an extreme phenotypic design was conducted to identify rare methylation modifications that might contribute to DR pathogenesis. A 2-year longitudinal nested case–control study was conducted to validate the results and assess whether these novel methylation modifications could be used as biomarkers for predicting DR onset. A large number of differentially methylated CpG sites were identified in the cross-sectional study, and two (cg12869254 and cg04026387) corresponding to known genes were replicated in the longitudinal study. Higher methylation of cg12869254 significantly correlated with macular RNFL thinning in the superior and nasal subregions, and that of cg04026387 correlated with reduced deep capillary plexus VD in the superior and inferior subregions after adjusting for covariates. Conclusions Cg12869254 and cg04026387 hypermethylation may complement the known risk factors that contribute to the pathogenesis of DR and as novel biomarkers for disease prediction.

Funder

National Natural Science Foundation of China

Guangzhou Science & Technology Plan of Guangdong Pearl River Talents Program

Fundamental Research Funds of the State Key Laboratory of Ophthalmology

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3