Epigenetic imprinting alterations as effective diagnostic biomarkers for early-stage lung cancer and small pulmonary nodules

Author:

Zhou Jian,Cheng Tong,Li Xing,Hu Jie,Li Encheng,Ding Ming,Shen Rulong,Pineda John P.,Li Chun,Lu Shaohua,Yu Hongyu,Sun Jiayuan,Huang Wenbin,Wang Xiaonan,Si Han,Shi Panying,Liu Jing,Chang Meijia,Dou Maosen,Shi Meng,Chen Xiaofeng,Yung Rex C.,Wang Qi,Zhou Ning,Bai ChunxueORCID

Abstract

Abstract Background Early lung cancer detection remains a clinical challenge for standard diagnostic biopsies due to insufficient tumor morphological evidence. As epigenetic alterations precede morphological changes, expression alterations of certain imprinted genes could serve as actionable diagnostic biomarkers for malignant lung lesions. Results Using the previously established quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) method, elevated aberrant allelic expression of imprinted genes GNAS, GRB10, SNRPN and HM13 was observed in lung cancers over benign lesions and normal controls, which were pathologically confirmed among histologically stained normal, paracancerous and malignant tissue sections. Based on the differential imprinting signatures, a diagnostic grading model was built on 246 formalin-fixed and paraffin-embedded (FFPE) surgically resected lung tissue specimens, tested against 30 lung cytology and small biopsy specimens, and blindly validated in an independent cohort of 155 patients. The QCIGISH diagnostic model demonstrated 99.1% sensitivity (95% CI 97.5–100.0%) and 92.1% specificity (95% CI 83.5–100.0%) in the blinded validation set. Of particular importance, QCIGISH achieved 97.1% sensitivity (95% CI 91.6–100.0%) for carcinoma in situ to stage IB cancers with 100% sensitivity and 91.7% specificity (95% CI 76.0–100.0%) noted for pulmonary nodules with diameters ≤ 2 cm. Conclusions Our findings demonstrated the diagnostic value of epigenetic imprinting alterations as highly accurate translational biomarkers for a more definitive diagnosis of suspicious lung lesions.

Funder

zhongshan hospital clinical research foundation

national natural science foundation of china

national major scientific and technological special project

shanghai municipal key clinical specialty

science and technology commission of shanghai municipality

jiangsu science and technology development project

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3