Nitrogen transformation processes catalyzed by manure microbiomes in earthen pit and concrete storages on commercial dairy farms

Author:

Khairunisa Bela Haifa,Loganathan Usha,Ogejo Jactone A.,Mukhopadhyay Biswarup

Abstract

AbstractStoring manure is an essential aspect of nutrient management on dairy farms. It presents the opportunity to use manure efficiently as a fertilizer in crop and pasture production. Typically, the manure storages are constructed as earthen, concrete, or steel-based structures. However, storing manure can potentially emit aerial pollutants to the atmosphere, including nitrogen and greenhouse gases, through microbial and physicochemical processes. We have characterized the composition of the microbiome in two manure storage structures, a clay-lined earthen pit and an aboveground concrete storage tank, on commercial dairy farms, to discern the nitrogen transformation processes, and thereby, inform the development of mitigation practices to preserve the value of manure. First, we analyzed the 16S rRNA-V4 amplicons generated from manure samples collected from several locations and depths (0.3, 1.2, and 2.1–2.75 m below the surface) of the storages, identifying a set of Amplicon Sequence Variant (ASVs) and quantifying their abundances. Then, we inferred the respective metabolic capabilities. These results showed that the manure microbiome composition was more complex and exhibited more location-to-location variation in the earthen pit than in the concrete tank. Further, the inlet and a location with hard surface crust in the earthen pit had unique consortia. The microbiomes in both storages had the potential to generate ammonia but lacked the organisms for oxidizing it to gaseous compounds. However, the microbial conversion of nitrate to gaseous N2, NO, and N2O via denitrification and to stable ammonia via dissimilatory nitrite reduction seemed possible; minor quantities of nitrate was present in manure, potentially originating from oxidative processes occurring on the barn floor. The nitrate-transformation linked ASVs were more prevalent at the near-surface locations and all depths of the inlet. Anammox bacteria and archaeal or bacterial autotrophic nitrifiers were not detected in either storage. Hydrogenotrophic Methanocorpusculum species were the primary methanogens or methane producers, exhibiting higher abundance in the earthen pit. These findings suggested that microbial activities were not the main drivers for nitrogen loss from manure storage, and commonly reported losses are associated with the physicochemical processes. Finally, the microbiomes of stored manure had the potential to emit greenhouse gases such as NO, N2O, and methane.

Funder

Graduate Fellowship from the Genetics, Bioinformatics, and Computational Biology Ph.D. Program of the Virginia Tech

United States Department of Culture National Institute of Food and Agriculture

Virginia Tech Agricultural Experiment Station Hatch Program

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3