Sex separation strategies: past experience and new approaches

Author:

Papathanos Philippos A,Bossin Hervé C,Benedict Mark Q,Catteruccia Flaminia,Malcolm Colin A,Alphey Luke,Crisanti Andrea

Abstract

Abstract The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference48 articles.

1. Knipling EF: Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955, 48: 459-469.

2. McInnis DO, Tam S, Grace C, Miyashita D: Population suppression and sterility rates induced by variable sex ratio, sterile insect releases of Ceratitis capitata (Diptera: Tephritidae) in Hawaii. Ann Entomol Soc Am. 1994, 87: 231-240.

3. Rendon P, McInnis D, Lance DR, Stewart J: Comparison of medfly male-only and bisexual releases in large scale field trials. Edited by: Tan K-H. 2000, Penang: Penerbit Universit Sains Malaysia, 517-525.

4. Krafsur ES, Whitten CJ, Novy JE: Screwworm eradication in North and Central America. Parasitol Today. 1987, 3: 131-137. 10.1016/0169-4758(87)90196-7.

5. Knipling EF, Laven H, Craig GB, Pal R, Smith CN, Brown AWA: Genetic control of insects of public health importance. Bull World Health Organ. 1968, 38: 421-438.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3