The characteristics of oviposition and hormonal and gene regulation of ovarian follicle development in Magang geese

Author:

Qin Qingming,Sun Aidong,Guo Rihong,Lei Mingming,Ying Shijia,Shi Zhendan

Abstract

Abstract Background Egg laying in Magang geese is characterized by extended interruption between clutches and lowing laying rate. Both the ovarian follicular development and ovulation characteristics, and the associated endocrine and molecular regulatory mechanisms involved are poorly understood, but could be important for guiding development of molecule aided selection of egg laying performances in geese. This study, therefore, recorded egg-laying characteristics of Magang geese, and the endocrine and molecular regulatory mechanisms of ovarian follicular development, maturation, and ovulation in Magang geese. Methods Oviposition, ovarian follicle development, and reproductive hormone and gene expression profiles were observed in a small flock of Magang geese. Results Greater than 73% of eggs were laid during the day. The average oviposition interval was 46.8 h (36–55 h). It took approximately 18 days for large white follicles to develop into mature F1 follicles; follicular growth was exponential. LHR expression levels increased from the small to the large mature follicles, but FSHR expression decreased in the granulosa and thecal layers. As the follicles matured, inhibin alpha and inhibin betaA expression increased in the granulosa layer. Activin IR, activin IIRA, activin IIRB, and beta-glycan expressions also increased as the follicles increased in size, but were more abundantly expressed in the thecal than in the granulosa layers. During the oviposition cycle, plasma concentrations of gonadal hormones decreased rapidly, whereas the level of PGFM peaked around ovulation. The profiles of activin, inhibin, follistatin, estradiol, and progesterone leading to ovulation were characterized. Conclusions The molecular and endocrine mechanisms that regulate follicular development in Magang geese are similar to those in chickens. Moreover, gonadotropin regulation and interaction between activin, inhibin, and follistatin secretion may govern 3-stage maturation in the final preovulatory follicles in Magang geese. The rapid rebound of post-ovulatory secretions of inhibin and follistatin may inhibit recruitment of new SYF recruitment once a sequence of eggs is started, and may limit the egg clutch size to no more than the number of LYFs present before the first sequence egg.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Endocrinology,Reproductive Medicine,Obstetrics and Gynecology

Reference20 articles.

1. Shen G, Gong GF, Lv SY: Current waterfowl production and future tendency in China. Waterfowl world. 2011, 5: 7-12.

2. Huang YM, Shi ZD, Liu Z, Liu Y, Li XW: Endocrine regulations of reproductive seasonality, follicular development and incubation in Magang geese. Anim Reprod Sci. 2008, 104: 344-358. 10.1016/j.anireprosci.2007.02.005.

3. Shi ZD, Tian YB, Wu W: Controlling reproductive seasonality in the geese: a review. Worlds Poult Sci J. 2008, 64: 343-355.

4. Yang CZ, Cai LC, Rong ZK: Observation results of the nucleus flock of selection program of Magang geese. Journal of Fushan University (Natural Science Edition). 2001, 19: 50-62.

5. Bogenfüst F: Importance of technological developments on improvement of reproduction parameters of geese. 2005, Proceedings of the 3rd World Waterfowl Conference, 119-122.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3