IL-1R/C3aR signaling regulates synaptic pruning in the prefrontal cortex of depression

Author:

Zhang Man-Man,Guo Min-Xia,Zhang Qiu-Ping,Chen Xue-Qin,Li Na-Zhi,Liu Qing,Cheng Jie,Wang Shi-Le,Xu Guang-Hui,Li Cheng-Fu,Zhu Ji-Xiao,Yi Li-TaoORCID

Abstract

Abstract Background Major depressive disorder is characterized by not only monoamine neurotransmitters deficiencies but also persistent neuroinflammation. The complement system is an attractive therapeutic target for various inflammation-related diseases due to its early activation in inflammatory processes. Results In the present study, the dynamic alteration of complement C3 and its receptor C3aR during the occurrence of depression and the mechanism of astrocyte-microglia IL-1R/C3/C3aR on synaptic pruning were investigated. The proteomic analysis firstly showed that chronic stress caused an elevation of C3. GO analysis indicated that complement system-mediated synaptic pruning signaling was involved in depression. The dynamic observation indicated that C3/C3aR was activated in the early onset and throughout the course of depression induced by lipopolysaccharide (LPS) and chronic stress. In contrast, C3aR blockade inhibited the hyperactivation of microglial APT2/DHHC7 palmitoylation cycle, which mediated the translocation of STAT3 and the expression of proinflammatory cytokines. Meanwhile, C3aR blockade also attenuated the synaptic pruning and enhanced the synaptogenesis in the prefrontal cortex of mice. Moreover, the blockade of IL-1R/NF-κB signaling pathway reduced the release of C3 from astrocyte. Conclusions The current study demonstrates that astrocyte-microglia IL-1R/C3/C3aR activation causes the abnormal synaptic pruning in depression, and suggests that the activation of complement C3/C3aR may be particularly helpful in predicting the onset stage of depression.

Funder

Department of Education, Fujian Province

Xiamen Municipal Health Commission

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3