Rasal1 regulates calcium dependent neuronal maturation by modifying microtubule dynamics

Author:

Deurloo M. H. S.,Eide S.,Turlova E.,Li Q.,Spijker S.,Sun H.-S.,Groffen A. J. A.,Feng Z.-P.ORCID

Abstract

Abstract Background Rasal1 is a Ras GTPase-activating protein which contains C2 domains necessary for dynamic membrane association following intracellular calcium elevation. Membrane-bound Rasal1 inactivates Ras signaling through its RasGAP activity, and through such mechanisms has been implicated in regulating various cellular functions in the context of tumors. Although highly expressed in the brain, the contribution of Rasal1 to neuronal development and function has yet to be explored. Results We examined the contributions of Rasal1 to neuronal development in primary culture of hippocampal neurons through modulation of Rasal1 expression using molecular tools. Fixed and live cell imaging demonstrate diffuse expression of Rasal1 throughout the cell soma, dendrites and axon which localizes to the neuronal plasma membrane in response to intracellular calcium fluctuation. Pull-down and co-immunoprecipitation demonstrate direct interaction of Rasal1 with PKC, tubulin, and CaMKII. Consequently, Rasal1 is found to stabilize microtubules, through post-translational modification of tubulin, and accordingly inhibit dendritic outgrowth and branching. Through imaging, molecular, and electrophysiological techniques Rasal1 is shown to promote NMDA-mediated synaptic activity and CaMKII phosphorylation. Conclusions Rasal1 functions in two separate roles in neuronal development; calcium regulated neurite outgrowth and the promotion of NMDA receptor-mediated postsynaptic events which may be mediated both by interaction with direct binding partners or calcium-dependent regulation of down-stream pathways. Importantly, the outlined molecular mechanisms of Rasal1 may contribute notably to normal neuronal development and synapse formation.

Funder

Institute of Neurosciences, Mental Health and Addiction

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3