Modaline sulfate promotes Oct4 expression and maintains self-renewal and pluripotency of stem cells through JAK/STAT3 and Wnt signaling pathways

Author:

Mei Xianglin,Zhao Hanhan,Ai Huihan,Wang Shuyue,Song Zhenbo,Zheng Lihua,Wang Guannan,Sun Ying,Bao Yongli

Abstract

Abstract Background Stem cells have been extensively explored for a variety of regenerative medical applications and they play an important role in clinical treatment of many diseases. However, the limited amount of stem cells and their tendency to undergo spontaneous differentiation upon extended propagation in vitro restrict their practical application. Octamer-binding transcription factor-4 (Oct4), a transcription factor belongs to the POU transcription factor family Class V, is fundamental for maintaining self-renewal ability and pluripotency of stem cells. Methods In the present study, we used the previously constructed luciferase reporters driven by the promoter and 3’-UTR of Oct4 respectively to screen potential activators of Oct4. Colony formation assay, sphere-forming ability assay, alkaline phosphatase (AP) activity assay and teratoma-formation assay were used to assess the role of modaline sulfate (MDLS) in promoting self-renewal and reinforcing pluripotency of P19 cells. Immunofluorescence, RT-PCR, and western blotting were used to measure expression changes of stem-related genes and activation of related signaling pathways. Results We screened 480 commercially available small-molecule compounds and discovered that MDLS greatly promoted the expression of Oct4 at both mRNA and protein levels. Moreover, MDLS significantly promoted the self-renewal capacity of P19 cells. Also, we observed that the expression of pluripotency markers and alkaline phosphatase (AP) increased significantly in MDLS-treated colonies. Furthermore, MDLS could promote teratoma formation and enhanced differentiation potential of P19 cells in vivo. In addition, we found that in the presence of LIF, MDLS could replace feeder cells to maintain the undifferentiated state of OG2-mES cells (Oct4-GFP reporter gene mouse embryonic stem cell line), and the MDLS-expanded OG2-mES cells showed an elevated expression levels of pluripotency markers in vitro. Finally, we found that MDLS promoted Oct4 expression by activating JAK/STAT3 and classic Wnt signaling pathways, and these effects were reversed by treatment with inhibitors of corresponding signaling pathways. Conclusions These findings demonstrated, for the first time, that MDLS could maintain self-renewal and pluripotency of stem cells.

Funder

Research Foundation of Jilin Provincial Science & Technology Development

Jilin Province Development and Reform Commission

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3