Single-cell transcriptome reveals a novel mechanism of C-Kit+-liver sinusoidal endothelial cells in NASH

Author:

Li Hui-Yi,Gao Yu-Xuan,Wu Jun-Cheng,Li Jing-Ze,Fu Seng-Wang,Xu Ming-YiORCID

Abstract

Abstract Aim To understand how liver sinusoidal endothelial cells (LSECs) respond to nonalcoholic steatohepatitis (NASH). Methods We profiled single-LSEC from livers of control and MCD-fed mice. The functions of C-Kit+-LSECs were determined using coculture and bone marrow transplantation (BMT) methods. Results Three special clusters of single-LSEC were differentiated. C-Kit+-LSECs of cluster 0, Msr1+-LSECs of cluster 1 and Bmp4+Selp+-VECs of cluster 2 were revealed, and these cells with diverse ectopic expressions of genes participated in regulation of endothelial, fibrosis and lipid metabolism in NASH. The number of C-Kit+-primary LSECs isolated from MCD mice was lower than control mice. Immunofluorescence co-staining of CD31 and C-KIT showed C-Kit+-LSECs located in hepatic sinusoid were also reduced in NASH patients and MCD mice, compared to AIH patients and control mice respectively. Interestingly, lipotoxic hepatocytes/HSCs cocultured with C-Kit+-LSECs or the livers of MCD mice receipting of C-Kit+-BMCs (bone marrow cells) showed less steatosis, inflammation and fibrosis, higher expression of prolipolytic FXR and PPAR-α, lower expression of TNF-α and α-SMA. Furthermore, coculturing or BMT of C-Kit+-endothelial derived cells could increase the levels of hepatic mitochondrial LC3B, decrease the degree of mitochondrial damage and ROS production through activating Pink1-mediated mitophagy pathway in NASH. Conclusions Hence, a novel transcriptomic view of LSECs was revealed to have heterogeneity and complexity in NASH. Importantly, a cluster of C-Kit+-LSECs was confirmed to recovery Pink1-related mitophagy and NASH progression.

Funder

National Natural Science Foundation of China

Shanghai East hospital talent introduction project

Medical discipline Construction Project of Pudong Health Committee of Shanghai

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3