DiGeorge syndrome critical region gene 2 (DGCR2), a schizophrenia risk gene, regulates dendritic spine development through cell adhesion

Author:

Ren Dongyan,Luo Bin,Chen Peng,Yu Lulu,Xiong Mingtao,Fu Zhiqiang,Zhou Tian,Chen Wen-Bing,Fei ErkangORCID

Abstract

Abstract Background Dendritic spines are the sites of excitatory synapses on pyramidal neurons, and their development is crucial for neural circuits and brain functions. The spine shape, size, or number alterations are associated with neurological disorders, including schizophrenia. DiGeorge syndrome critical region gene 2 (DGCR2) is one of the deleted genes within the 22q11.2 deletion syndrome (22q11DS), which is a high risk for developing schizophrenia. DGCR2 expression was reduced in schizophrenics. However, the pathophysiological mechanism of DGCR2 in schizophrenia or 22q11DS is still unclear. Results Here, we report that DGCR2 expression was increased during the neurodevelopmental period and enriched in the postsynaptic densities (PSDs). DGCR2-deficient hippocampal neurons formed fewer spines. In agreement, glutamatergic transmission and synaptic plasticity were decreased in the hippocampus of DGCR2-deficient mice. Further molecular studies showed that the extracellular domain (ECD) of DGCR2 is responsible for its transcellular interaction with cell adhesion molecule Neurexin1 (NRXN1) and spine development. Consequently, abnormal behaviors, like anxiety, were observed in DGCR2-deficient mice. Conclusions These observations indicate that DGCR2 is a novel cell adhesion molecule required for spine development and synaptic plasticity, and its deficiency induces abnormal behaviors in mice. This study provides a potential pathophysiological mechanism of DGCR2 in 22q11DS and related mental disorders.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3