Single-cell analysis unveils activation of mast cells in colorectal cancer microenvironment

Author:

Xie Zhenyu,Niu Liaoran,Zheng Gaozan,Du Kunli,Dai Songchen,Li Ruikai,Dan Hanjun,Duan Lili,Wu Hongze,Ren Guangming,Dou Xinyu,Feng Fan,Zhang Jian,Zheng JianyongORCID

Abstract

AbstractThe role of mast cells (MCs) in colorectal cancer (CRC) remains unclear, and a comprehensive single-cell study on CRC MCs has not been conducted. This study used a multi-omics approach, integrating single-cell sequencing, spatial transcriptomics, and bulk tissue sequencing data to investigate the heterogeneity and impact of MCs in CRC. Five MC signature genes (TPSAB1, TPSB2, CPA3, HPGDS, and MS4A2) were identified, and their average expression was used as a marker of MCs. The MC density was found to be lower in CRC compared to normal tissue, but MCs in CRC demonstrated distinct activation features. Activated MCs were defined by high expression of receptors and MC mediators, while resting MCs had low expression. Most genes, including the five MC signature genes, were expressed at higher levels in activated MCs. The MC signature was linked to a better prognosis in both CRC and pan-cancer patient cohorts. Elevated KITLG expression was observed in fibroblasts and endothelial cells in CRC samples compared to normal tissue, and co-localization of MCs with these cell types was revealed by spatial transcriptome analysis. In conclusion, this study finds decreased MC density in CRC compared to normal tissue, but highlights a shift in MC phenotype from CMA1high resting cells to activated TPSAB1high, CPA3high, and KIThigh cells. The elevated KITLG expression in the tumor microenvironment’s fibroblasts and endothelial cells may activate MCs through the KITLG-KIT axis, potentially suppressing tumor progression.

Funder

This work was supported by the National Natural Science Foundation of China

Scientific and technological innovation team of Shaanxi Innovation Capability Support Plan

Key R&D Plan of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3