Rebuilding hippocampus neural circuit with hADSC-derived neuron cells for treating ischemic stroke

Author:

Wang Jian,Hao Rui,Jiang Tianfang,Guo Xuanxuan,Zhou Fei,Cao Limei,Gao Fengjuan,Wang Guangming,Wang Juan,Ning Ke,Zhong Chunlong,Chen Xu,Huang Ying,Xu Jun,Gao Shane

Abstract

Abstract Background Human adipose-derived stem cells (hADSCs) have been demonstrated to be a promising autologous stem cell source for treating various neuronal diseases. Our study indicated that hADSCs could be induced into neuron-like cells in a stepwise manner that are characterized by the positive expression of MAP2, SYNAPSIN 1/2, NF-200, and vGLUT and electrophysiological activity. We first primed hADSCs into neuron-like cells (hADSC-NCs) and then intracerebrally transplanted them into MCAO reperfusion mice to further explore their in vivo survival, migration, integration, fate commitment and involvement in neural circuit rebuilding. Results The hADSC-NCs survived well and transformed into MAP2-positive, Iba1- or GFAP-negative cells in vivo while maintaining some proliferative ability, indicated by positive Ki67 staining after 4 weeks. hADSC-NCs could migrate to multiple brain regions, including the cortex, hippocampus, striatum, and hypothalamus, and further differentiate into mature neurons, as confirmed by action potential elicitation and postsynaptic currents. With the aid of a cell suicide system, hADSC-NCs were proven to have functionally integrated into the hippocampal memory circuit, where they contributed to spatial learning and memory rescue, as indicated by LTP improvement and subsequent GCV-induced relapse. In addition to infarction size shrinkage and movement improvement, MCAO-reperfused mice showed bidirectional immune modulation, including inhibition of the local proinflammatory factors IL-1α, IL-1β, IL-2, MIP-1β and promotion proinflammatory IP-10, MCP-1, and enhancement of the anti-inflammatory factors IL-15. Conclusion Overall, hADSC-NCs used as an intermediate autologous cell source for treating stroke can rebuild hippocampus neuronal circuits through cell replacement.

Funder

the ministry of science and technology of china

the national major scientific and technological special project for “significant new drug development”

the national natural science foundation of china

the shanghai science and technology foundation

the shanghai natural science foundation

Natural Science Foundation of Shandong Province

Key Research Project of Yantai City

Xujun’s Expert Work Station

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Reference73 articles.

1. Abdanipour A, Tiraihi T, Delshad A. Trans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline. Iran Biomed J. 2011;15:113–21.

2. Albers GW, Diener HC, Grind M, Halperin JL, Horrow J, Olsson SB, Petersen P, Vahanian A, Frison L, Nevinson M, et al. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet. 2003;362:1691–8.

3. Blecker D, Elashry MI, Heimann M, Wenisch S, Arnhold S. New insights into the neural differentiation potential of canine adipose tissue-derived mesenchymal stem cells. Anat Histol Embryol. 2017;46:304–15.

4. Burrow KL, Hoyland JA, Richardson SM. Human adipose-derived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donor-matched bone marrow mesenchymal stem cells during expansion in vitro. Stem Cells Int. 2017;2017(2017):2541275.

5. Chen AZ, Liu N, Huang H, Lin FF, Liu DS, Lin XH. Outgrowth of neuronal axons on adipose-derived stem cell transplanting for treatment of cerebral infarction in rats. Chin J Cell Mol Imm. 2011;27:868–71.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3