Small RNAs in eucaryotes: new clues for amplifying microRNA benefits

Author:

Ledda Bernardetta,Ottaggio Laura,Izzotti Alberto,Sukkar Samir G.,Miele Mariangela

Abstract

AbstractmiRNAs, the smallest nucleotide molecules able to regulate gene expression at post transcriptional level, are found in both animals and plants being involved in fundamental processes for growth and development of living organisms. The number of miRNAs has been hypothesized to increase when some organisms specialized the process of mastication and grinding of food. Further to the vertical transmission, miRNAs can undergo horizontal transmission among different species, in particular between plants and animals. In the last years, an increasing number of studies reported that miRNA passage occurs through feeding, and that in animals, plant miRNAs can survive the gastro intestinal digestion and transferred by blood into host cells, where they can exert their functions modulating gene expression. The present review reports studies on miRNAs during evolution, with particular focus on biogenesis and mechanisms regulating their stability in plants and animals. The different biogenesis and post biogenesis modifications allow to discriminate miRNAs of plant origin from those of animal origin, and make it possible to better clarify the controversial question on whether a possible cross-kingdom miRNA transfer through food does exist. The majority of human medicines and supplements derive from plants and a regular consumption of plant food is suggested for their beneficial effects in the prevention of metabolic diseases, cancers, and dietary related disorders. So far, these beneficial effects have been generally attributed to the content of secondary metabolites, whereas mechanisms regarding other components remain unclear. Therefore, in light of the above reported studies miRNAs could result another component for the medical properties of plants. miRNAs have been mainly studied in mammals characterizing their sequences and molecular targets as available in public databases. The herein presented studies provide evidences that miRNA situation is much more complex than the static situation reported in databases. Indeed, miRNAs may have redundant activities, variable sequences, different methods of biogenesis, and may be differently influenced by external and environmental factors. In-depth knowledge of mechanisms of synthesis, regulation and transfer of plant miRNAs to other species can open new frontiers in the therapy of many human diseases, including cancer.

Funder

AIRC

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3