Extreme precipitation trends in Northeast China based on a non-stationary generalized extreme value model

Author:

Meng Fangxiu,Xie Kang,Liu Peng,Chen Huazhou,Wang Yao,Shi HaiyunORCID

Abstract

AbstractNortheast China is the main food production base of China. Extreme precipitation (EP) events can seriously impact agricultural production and socioeconomics, but the understanding of EP in Northeast China is still limited. In this study, using the non-stationary generalized extreme value (GEV) model, we investigate the trend and potential risk of EP in Northeast China during 1959–2017, especially in early and mid-summer (periods of high frequency of EP). Then, the relationships between EP and large-scale circulation over Northeast China in early and mid-summer are analyzed separately. The EP in Northeast China mainly presents positive trends in early summer but negative trends in mid-summer. Meanwhile, the EP with all the return periods presents apparently increasing trends in early summer, corresponding to more frequent EP events. Nevertheless, in mid-summer, the EP with 2-year return period decreases with location parameter, and the EP with 20-year, 50-year, and 100-year return periods slightly increases with scale parameter. The EP with 2-year return period occurs frequently in Liaoning Province, while the EP with 100-year return period is more likely to occur in Jilin Province and Heilongjiang Province. Moreover, the increase of the EP in early summer is mainly influenced by the northeast cold vortex; the effect of cold air on the EP is stronger in mid-summer, giving a clear explanation why the EP in mid-summer does not increase significantly. Overall, the outcomes of this study would be beneficial for the disaster prevention and mitigation in Northeast China.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks

Guangdong Key Laboratory of Soil and Groundwater Pollution Control

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3