Abstract
Abstract
Background
Switchgrass (Panicum virgatum L.) is an important bioenergy and forage crop. The outcrossing nature of switchgrass makes it infeasible to maintain a genotype through sexual propagation. Current asexual propagation protocols in switchgrass have various limitations. An easy and highly-efficient vegetative propagation method is needed to propagate large natural collections of switchgrass genotypes for genome-wide association studies (GWAS).
Results
Micropropagation by node culture was found to be a rapid method for vegetative propagation of switchgrass. Bacterial and fungal contamination during node culture is a major cause for cultural failure. Adding the biocide, Plant Preservative Mixture (PPM, 0.2%), and the fungicide, Benomyl (5 mg/l), in the incubation solution after surface sterilization and in the culture medium significantly decreased bacterial and fungal contamination. In addition, “shoot trimming” before subculture had a positive effect on shoot multiplication for most genotypes tested. Using the optimized node culture procedure, we successfully propagated 330 genotypes from a switchgrass GWAS panel in three separate experiments. Large variations in shoot induction efficiency and shoot growth were observed among genotypes. Separately, we developed an in planta node culture method by stimulating the growth of aerial axillary buds into shoots directly on the parent plants, through which rooted plants can be generated within 6 weeks. By circumventing the tissue culture step and avoiding application of exterior hormones, the in planta node culture method is labor- and cost-efficient, easy to master, and has a high success rate. Plants generated by the in planta node culture method are similar to seedlings and can be used directly for various experiments.
Conclusions
In this study, we optimized a switchgrass node culture protocol by minimizing bacterial and fungal contamination and increasing shoot multiplication. With this improved protocol, we successfully propagated three quarters of the genotypes in a diverse switchgrass GWAS panel. Furthermore, we established a novel and high-throughput in planta node culture method. Together, these methods provide better options for researchers to accelerate vegetative propagation of switchgrass.
Funder
Center for Bioenergy Innovation
Noble Research Institute
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Vogel KP. Switchgrass. In: Moser LE, Burson BL, Sollenberger LE, editors. Warm-season (C4) grasses. Agron Monogr 45. Madison: ASA-CSSA-SSA; 2004. p. 561–88.
2. McLaughlin SB, Kszos LA. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy. 2005;28:515–35.
3. Parrish DJ, Fike JH. The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci. 2005;24:423–59.
4. Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G. Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci. 2006;86:1315–25.
5. Nageswara-Rao M, Stewart CN, Kwit C. Genetic diversity and structure of natural and agronomic switchgrass (Panicum virgatum L.) populations. Genet Resour Crop Evol. 2013;60:1057–68. https://doi.org/10.1007/s10722-012-9903-x.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献