Comparative morpho-physiological and biochemical responses of Capsicum annuum L. plants to multi-walled carbon nanotubes, fullerene C60 and graphene nanoplatelets exposure under water deficit stress

Author:

Ahmadi Seyede Zahra,Zahedi Bahman,Ghorbanpour Mansour,Mumivand Hasan

Abstract

AbstractWater deficit stress is one of the most significant environmental abiotic factors influencing plant growth and metabolism globally. Recently, encouraging outcomes for the use of nanomaterials in agriculture have been shown to reduce the adverse effects of drought stress on plants. The present study aimed to investigate the impact of various carbon nanomaterials (CNMs) on the physiological, morphological, and biochemical characteristics of bell pepper plants subjected to water deficit stress conditions. The study was carried out as a factorial experiment using a completely randomized design (CRD) in three replications with a combination of three factors. The first factor considered was irrigation intensity with three levels [(50%, 75%, and 100% (control) of the field capacity (FC)] moisture. The second factor was the use of carbon nanomaterials [(fullerene C60, multi-walled carbon nanotubes (MWNTs) and graphene nanoplatelets (GNPs)] at various concentrations [(control (0), 100, 200, and 1000 mg/L)]. The study confirmed the foliar uptake of CNMs using the Scanning Electron Microscopy (SEM) technique. The effects of the CNMs were observed in a dose-dependent manner, with both stimulatory and toxicity effects being observed. The results revealed that exposure to MWNTs (1000 mg/L) under well-watered irrigation, and GNPs treatment (1000 mg/L) under severe drought stress (50% FC) significantly (P < 0.01) improved fruit production and fruit dry weight by 76.2 and 73.2% as compared to the control, respectively. Also, a significant decrease (65.9%) in leaf relative water content was obtained in plants subjected to soil moisture of 50% FC over the control. Treatment with GNPs at 1000 mg/L under 50% FC increased electrolyte leakage index (83.6%) compared to control. Foliar applied MWNTs enhanced the leaf gas exchange, photosynthesis rate, and chlorophyll a and b concentrations, though decreased the oxidative shock in leaves which was demonstrated by the diminished electrolyte leakage index and upgrade in relative water content and antioxidant capacity compared to the control. Plants exposed to fullerene C60 at 100 and 1000 mg/L under soil moisture of 100 and 75% FC significantly increased total flavonoids and phenols content by 63.1 and 90.9%, respectively, as compared to the control. A significant increase (184.3%) in antioxidant activity (FRAP) was observed in plants exposed to 200 mg/L MWCNTs under irrigation of 75% FC relative to the control. The outcomes proposed that CNMs could differentially improve the plant and fruit characteristics of bell pepper under dry conditions, however, the levels of changes varied among CNMs concentrations. Therefore, both stimulatory and toxicity effects of employed CNMs were observed in a dose-dependent manner. The study concludes that the use of appropriate (type/dose) CNMs through foliar application is a practical tool for controlling the water shortage stress in bell pepper. These findings will provide the basis for more research on CNMs-plant interactions, and with help to ensure their safe and sustainable use within the agricultural chains.

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. Getahun D, Habtie B. Growth and yielding potential of Hot Pepper cultivars under rain-Fed production at Woreta, Northwestern Ethiopia. Int J Res Stud Agricultural Sci. 2017;3(3):11–8.

2. Chiou kL, Hastorf CA. A systematic Approach to Species–Level Identification of Chile Pepper (Capsicum spp.) seeds: establishing the Groundwork for Tracking the Domestication and Movement of Chile Peppers through the Americas and Beyond1. Bronx, NY 10458 – 5126 U.S.A.: The New York Botanical Garden; 2014.

3. Ahmadi SH, Ardakani J. The effect of water salinity on growth and physiological stage of eight canola (Brassica napus) cultivars. Irrig Sci. 2006;25:11–20.

4. Wang Y, Gao L, Wang Q, Zuo J. Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper. Sci Hort. 2019;243:434–9.

5. Ge W, Zhao Y, Kong X, Sun H, Luo M, Yao M, Wei B, Ji S. Combining salicylic acid and trisodium phosphate alleviates chilling injury in bell pepper (Capsicum annuum L.) through enhancing fatty-acid desaturation efficiency and water retention. Food Chem. 2020;327:127057.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3