Predicting and optimizing reactive oxygen species metabolism in Punica granatum L. through machine learning: role of exogenous GABA on antioxidant enzyme activity under drought and salinity stress

Author:

Zarbakhsh Saeedeh,Shahsavar Ali Reza,Afaghi Ali,Hasanuzzaman Mirza

Abstract

Abstract Background Drought and salinity stress have been proposed as the main environmental factors threatening food security, as they adversely affect crops' agricultural productivity. As a potential solution, the application of plant growth regulators to enhance drought and salinity tolerance has gained considerable attention. γ-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that accumulates in plants as a response to stressful conditions. This study focused on a comparative assessment of several machine learning (ML) regression models, including radial basis function, generalized regression neural network (GRNN), random forest (RF), and support vector regression (SVR) to develop predictive models for assessing the effect of different concentrations of GABA (0, 10, 20, and 40 mM) on various physio-biochemical traits during periods of drought, salinity, and combined stress conditions. The physio-biochemical traits included antioxidant enzyme activities (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; and ascorbate peroxidase, APX), protein content, malondialdehyde (MDA) levels, and hydrogen peroxide (H2O2) levels. The non‑dominated sorting genetic algorithm‑II (NSGA‑II) was employed for optimizing the superior prediction model. Results The GRNN model outperformed the other ML algorithms and was therefore selected for optimization by NSGA-II. The GRNN-NSGA-II model revealed that treatment with GABA at concentrations of 20.90 mM and 20.54 mM, under combined drought and salinity stress conditions at 20.86 and 20.72 days post-treatment, respectively, could result in the maximum values for protein content (by 0.80 and 0.69), APX activity (by 50.63 and 51.51), SOD activity (by 0.54 and 0.53), POD activity (by 1.53 and 1.72), CAT activity (by 4.42 and 5.66), as well as lower MDA levels (by 0.12 and 0.15) and H2O2 levels (by 0.44 and 0.55), respectively, in the ‘Atabaki’ and ‘Rabab’ cultivars. Conclusions This study demonstrates that the GRNN-NSGA-II model, as an advanced ML algorithm with a strong predictive ability for outcomes in combined stressful environmental conditions, provides valuable insights into the significant factors influencing such multifactorial processes.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3