Insights into adaptive evolution of plastomes in Stipa L. (Poaceae)

Author:

Krawczyk Katarzyna,Myszczyński Kamil,Nobis Marcin,Sawicki Jakub

Abstract

Abstract Background The study presents results of research on the evolution of plastid genomes in Stipa L. which is a large genus of the Poaceae family, comprising species diverse in terms of geographic distribution, growing under highly variated habitat conditions. Complete plastome sequences of 43 taxa from Stipeae and Ampelodesmae tribes were analyzed for the variability of the coding regions against the background of phylogenetic relationships within the genus Stipa. The research hypothesis put forward in our research was that some of coding regions are affected by a selection pressure differentiated between individual phylogenetic lines of Stipa, potentially reducing the phylogenetic informativeness of these CDS. The study aimed to answer the question, which genes evolve in Stipa most rapidly and what kind of changes in the properties of encoded amino acids this entails. Another goal of this research was to find out whether individual genes are affected by positive selection and finally, whether selective pressure is uniform within the genus or does it vary between particular evolutionary lines within the genus. Results Results of our study proved the presence of selective pressure in 11 genes: ccsA, matK, ndhC, ndhF, ndhK, rbcL, rpoA rpoC1, rpoC2, rps8 and rps11. For the first time the effect of positive selection on the rps8, rps11, and ndhK genes was documented in grasses. The varied pace of evolution, different intensity and effects of selective pressure have been demonstrated between particular phylogenetic lines of the genus tested. Conclusions Positive selection in plastid genome in Stipa mostly affects photosynthetic genes. The potential strongest adaptive pressure was observed in the rbcL gene, especially in the oldest evolutionary group comprising Central Asian high-mountain species: S. basiplumosa, S. klimesii, S. penicillata and S. purpurea, where adaptive pressure probably affected the amino acids directly related to the efficiency of CO2 assimilation.

Funder

National Science Center, Poland

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference61 articles.

1. Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications: Phylogenetic classification of the grasses II. J Syt Evol. 2017;55:259–90.

2. CGIAR Genebank Platform Annual Report 2020. URL https://www.genebanks.org/the-platform/ . Accessed 12 Dec 2021.

3. Nobis M, Gudkova PD, Nowak A, Sawicki J, Nobis A. A synopsis of the genus Stipa (Poaceae) in Middle Asia, including a key to species identification, an annotated checklist, and phytogeographic analyses. Annals. 2020;105:1–63.

4. Romaschenko K, Peterson PM, Soreng RJ, Garcia-Jacas N, Susanna A. Phylogenetics of Stipeae (Poaceae: Pooideae) based on plastid and nuclear DNA sequences. In: Seberg O, Petersen G, Barfod AS, Davis JI, editors. Diversity, phylogeny, and evolution in the monocotyledons. Aarhus: Aarhus University Press; 2010. p. 511–37.

5. Tzvelev NN. Grasses of the Soviet Union. Ltd: Oxonian Press Pvt; 1983.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3