In vitro induction of tetraploidy and its effects on phenotypic variations in Populus hopeiensis

Author:

Wu Jian,Zhou Qing,Sang Yaru,Zhao Yifan,Kong Bo,Li Liang,Du Jiahua,Ma Lexun,Lu Min,Zhang Pingdong

Abstract

Abstract Background Artificial induction of polyploidy is the most common and effective way to improve the biological properties of Populus and develop new varieties of this tree. In this study, in order to confirm and expand earlier findings, we established a protocol using colchicine and based on an efficient shoot regeneration system of leaf blades to induce tetraploidy in vitro in three genotypes from diploid Populus hopeiensis. The stomatal characteristics, leaf blade size, and growth were evaluated for diploids and tetraploids of three genotypes. Results We found that genotype, preculture duration, colchicine concentration, and colchicine exposure time had highly significant effects on the tetraploid induction rate. The optimal protocol for inducing tetraploidy in P. hopeiensis was to preculture leaf blades for 7 days and then treat them for 4 days with 40 mg/L colchicine. The tetraploid induction rates of genotypes BT1, BT3, and BT8 were 21.2, 11.4 and 16.7%, respectively. A total of 136 tetraploids were identified by flow cytometry analysis and somatic chromosome counting. The stomatal length, width, and density of leaf blades significantly differed between diploid and tetraploid plants. Compared with their diploid counterparts, the tetraploids produced larger leaf blades and had a slower growth rate. Our findings further document the modified morphological characteristics of P. hopeiensis following whole-genome duplication (e.g., induced tetraploidy). Conclusions We established a protocol for in vitro induction of tetraploidy from diploid leaf blades treated with colchicine, which can be applied to different genotypes of P. hopeiensis.

Funder

National Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3