Overdominant expression of related genes of ion homeostasis improves K+ content advantage in hybrid tobacco leaves

Author:

Pi Kai,Luo Wen,Mo Zejun,Duan Lili,Ke Yuzhou,Wang Pingsong,Zeng Shuaibo,Huang Yin,Liu Renxiang

Abstract

Abstract Background Potassium(K+) plays a vital role in improving the quality of tobacco leaves. However, how to improve the potassium content of tobacco leaves has always been a difficult problem in tobacco planting. K+ content in tobacco hybrid is characterized by heterosis, which can improve the quality of tobacco leaves, but its underlying molecular genetic mechanisms remain unclear. Results Through a two-year field experiment, G70×GDH11 with strong heterosis and K326×GDH11 with weak heterosis were screened out. Transcriptome analyses revealed that 80.89% and 57.28% of the differentially expressed genes (DEGs) in the strong and weak heterosis combinations exhibited an overdominant expression pattern, respectively. The genes that up-regulated the overdominant expression in the strong heterosis hybrids were significantly enriched in the ion homeostasis. Genes involved in K+ transport (KAT1/2, GORK, AKT2, and KEA3), activity regulation complex (CBL-CIPK5/6), and vacuole (TPKs) genes were overdominant expressed in strong heterosis hybrids, which contributed to K+ homeostasis and heterosis in tobacco leaves. Conclusions K+ homeostasis and accumulation in tobacco hybrids were collectively improved. The overdominant expression of K+ transport and homeostasis-related genes conducted a crucial role in the heterosis of K+ content in tobacco leaves.

Funder

National Science Foundation of China

the Guizhou Province High-level Innovative Talents Training Project Hundred Talents Program

the Guizhou Provincial Key Foundation

the Science and Technology Project of Guizhou Tobacco Company

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3