Comparative transcriptome analysis of resistant and susceptible Kentucky bluegrass varieties in response to powdery mildew infection

Author:

Zhang Yujuan,Dong Wenke,Zhao Chunxu,Ma Huiling

Abstract

Abstract Background Poa pratensis is one of the most common cold-season turfgrasses used for urban turf building, and it is also widely used in ecological environment management worldwide. Powdery mildew is a common disease of P. pratensis. To scientifically and ecologically control lawn powdery mildew, the molecular mechanism underlying the response of P. pratensis to powdery mildew infection must better understood. Results To explore molecular mechanism underlying the response of P. pratensis to powdery mildew infection, this study compared physiological changes and transcriptomic level differences between the highly resistant variety ‘BlackJack’ and the extremely susceptible variety ‘EverGlade’ under powdery mildew infection conditions. We analyzed DEGs using reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that “starch and sucrose metabolism”, “photosynthesis” and “fatty acid metabolism”pathways were only enriched in ‘BlackJack’, and the expression of DEGs such as HXK, INV, GS, SS, AGpase and β-amylase in “starch and sucrose metabolism” pathway of ‘BlackJack’ were closely related to powdery mildew resistance. Meanwhile, compared with ‘EverGlade’, powdery mildew infection promoted synthesis of sucrose, expression of photosynthesis parameters and photosynthesis-related enzymes in leaves of ‘BlackJack’ and decreased accumulation of monosaccharides such as glucose and fructose. Conclusions This study identified the key metabolic pathways of a P. pratensis variety with high resistance to powdery mildew infection and explored the differences in physiological characteristics and key genes related to sugar metabolism pathways under powdery mildew stress. These findings provide important insights for studying underlying molecular response mechanism.

Funder

Scientific Research Start-up Funds for Openly-recruited Doctors of Gansu Agricultural University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3