Phytohormones and candidate genes synergistically regulate fruitlet abscission in Areca catechu L.

Author:

Li Jia,Chen Yunche,Zhou Guangzhen,Li Meng

Abstract

Abstract Background The fruit population of most plants is under the control of a process named “physiological drop” to selectively abort some developing fruitlets. However, frequent fruitlet abscission severely restricts the yield of Areca catechu. To reveal the physiological and molecular variations in this process, we detected the variation of phytohormone levels in abscised and non-abscised fruitlets in A. catechu. Results The levels of gibberellin acid, jasmonic acid, salicylic acid, abscisic acid and zeatin were elevated, while the indole-3-acetic acid and indole-3-carboxaldehyde levels were declined in the “about-to-abscise” part (AB) of abscission zone (AZ) compared to the “non-abscised” part (CK). Then the differentially expressed genes (DEGs) between AB and CK were screened based on transcriptome data. DEGs involved in phytohormone synthesis, response and transportation were identified as key genes. Genes related to cell wall biosynthesis, degradation, loosening and modification, and critical processes during fruit abscission were identified as role players. In addition, genes encoding transcription factors, such as NAC, ERF, WRKY, MADS and Zinc Finger proteins, showed differentially expressed patterns between AB and CK, were also identified as candidates. Conclusions These results unraveled a phytohormone signaling cross talk and key genes involved in the fruitlet abscission process in A. catechu. This study not only provides a theoretical basis for fruitlet abscission in A. catechu, but also identified many candidate genes or potential molecular markers for further breeding of fruit trees.

Funder

Hainan Province Science and Technology Special Fund

the Central Public-interest Scientific Institution Basal Research Fund

the Natural Science Foundation of Hunan Province

the Key Research Projects of Hunan Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3