Abstract
Abstract
Background
Camelina sativa (gold-of-pleasure) is a traditional European oilseed crop and emerging biofuel source with high levels of desirable fatty acids. A twentieth century germplasm bottleneck depleted genetic diversity in the crop, leading to recent interest in using wild relatives for crop improvement. However, little is known about seed oil content and genetic diversity in wild Camelina species.
Results
We used gas chromatography, environmental niche assessment, and genotyping-by-sequencing to assess seed fatty acid composition, environmental distributions, and population structure in C. sativa and four congeners, with a primary focus on the crop’s wild progenitor, C. microcarpa. Fatty acid composition differed significantly between Camelina species, which occur in largely non-overlapping environments. The crop progenitor comprises three genetic subpopulations with discrete fatty acid compositions. Environment, subpopulation, and population-by-environment interactions were all important predictors for seed oil in these wild populations. A complementary growth chamber experiment using C. sativa confirmed that growing conditions can dramatically affect both oil quantity and fatty acid composition in Camelina.
Conclusions
Genetics, environmental conditions, and genotype-by-environment interactions all contribute to fatty acid variation in Camelina species. These insights suggest careful breeding may overcome the unfavorable FA compositions in oilseed crops that are predicted with warming climates.
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Blume R, Rakhmetov D. Comparative analysis of oil fatty acid composition of Ukrainian spring Camelina sativa breeding forms and varieties as a perspective biodiesel source. Cruciferae Newslett. 2017;36:13–7.
2. Iskandarov U, Kim HJ, Cahoon EB. Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials. In: McCann MC, Buckeridge MS, Carpita NC, editors. Plants and bioenergy. Berlin: Springer; 2014. p. 131–40.
3. Moser BR. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 2010;22(12):270–3.
4. Shonnard DR, Williams L, Kalnes TM. Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy. 2010;29(3):382–92.
5. Augustin JM, Higashi Y, Feng X, Kutchan TM. Production of mono- and sesquiterpenes in Camelina sativa oilseed. Planta. 2015;242(3):693–708.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献