Tofu processing wastewater as a low-cost substrate for high activity nattokinase production using Bacillus subtilis

Author:

Li Tao,Zhan Chenyi,Guo Gege,Liu Zhaoxing,Hao Ning,Ouyang Pingkai

Abstract

Abstract Background Even though tofu is a traditional Chinese food loved by Asian people the wastewater generated during the production of tofu can pollute the environment, and the treatment of this generated wastewater can increase the operating cost of the plant. In this study, the production of nattokinase could be achieved by using the nitrogen source in tofu processing wastewater (TPW) instead of using the traditional nattokinase medium. This meets the need for the low-cost fermentation of nattokinase and at the same time addresses the environmental pollution concerns caused by the wastewater. Bacillus subtilis 13,932 is, a high yielding strain of nattokinase, which is stored in our laboratory. To increase the activity of nattokinase in the tofu process wastewater fermentation medium, the medium components and culture parameters were optimized. Nattokinase with high enzymatic activity was obtained in 7 L and 100 L bioreactors when TPW was used as the sole nitrogen source catalyzed by Bacillus subtilis. Such a result demonstrates that the production of nattokinase from TPW fermentation using B. subtilis can be implemented at an industrial level. Results The peptide component in TPW is a crucial factor in the production of nattokinase. Box–Behnken design (BBD) experiments were designed to optimize various critical components, i.e., Glucose, TPW, MgSO4·7H2O, CaCl2, in nattokinase fermentation media. A maximum nattokinase activity was recorded at 37 °C, pH 7.0, 70 mL liquid medium, and 200 rpm. The highest nattokinase activities obtained from 7 to 100 L bioreactors were 8628.35 ± 113.87 IU/mL and 10,661.97 ± 72.47 IU/mL, respectively. Conclusions By replacing the nitrogen source in the original medium with TPW, there was an increase in the enzyme activity by 19.25% after optimizing the medium and culture parameters. According to the scale-up experiment from conical flasks to 100 L bioreactors, there was an increase in the activity of nattokinase by 47.89%.

Funder

the Key Research and Development Program of Jiangsu Province

the National Key Research and Development Program of China

the Six Talent Peaks Project in Jiangsu Province

the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3