Author:
Shawahna Ramzi,Saba’aneh Hala,Daraghmeh Amal,Qassarwi Yara,Franco Valentina,Declèves Xavier
Abstract
Abstract
Background
Lamotrigine is an effective antiseizure medication that can be used in the management of focal and generalized epilepsies in pediatric patients. This study was conducted to quantify and compare the solubility of lamotrigine in age-specific biorelevant media that simulated the fasted and fed conditions of the gastric and intestinal environments in pediatrics and adults. Another aim was to predict how traditional, re-formulated, modified, and new oral formulations would behave in the gastric and intestinal environments across different age groups.
Methods
Solubility studies of lamotrigine were conducted in 16 different age-specific biorelevant media over the pH range and temperature specified by the current biopharmaceutical classification system-based criteria. The age-specific biorelevant media simulated the environments in the stomach and proximal gastrointestinal tract in both fasted and fed conditions of adults and pediatric sub-populations. The solubility of lamotrigine was determined using a pre-validated HPLC-UV method.
Results
Lamotrigine showed low solubility in the 16 age-specific biorelevant media as indicated by a dose number of > 1. There were significant age-specific variabilities in the solubility of lamotrigine in the different age-specific biorelevant media. Pediatric/adult solubility ratios of lamotrigine fell outside the 80-125% range in 6 (50.0%) and were borderline in 3 (25.0%) out of the 12 compared media. These ratios indicated that the solubility of lamotrigine showed considerable differences in 9 out of the 12 (75.0%) of the compared media.
Conclusion
Future studies are still needed to generate more pediatric biopharmaceutical data to help understand the performances of oral dosage forms in pediatric sub-populations.
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.
2. (EMA) EMA. : Committee for Medicinal Products for Human Use. Guideline on the investigation of bioequivalence. In.; 2010.
3. (FDA) UFaDA. : Draft Guidance. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. In: Food and Drug Administration, Rockville, MD 2015.
4. Kortejärvi H, Malkki J, Shawahna R, Scherrmann JM, Urtti A, Yliperttula M. Pharmacokinetic simulations to explore dissolution criteria of BCS I and III biowaivers with and without MDR-1 efflux transporter. Eur J Pharm Sciences: Official J Eur Federation Pharm Sci. 2014;61:18–26.
5. Kortejärvi H, Shawahna R, Koski A, Malkki J, Ojala K, Yliperttula M. Very rapid dissolution is not needed to guarantee bioequivalence for biopharmaceutics classification system (BCS) I drugs. J Pharm Sci. 2010;99(2):621–5.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献