Pulse wave-based evaluation of the blood-supply capability of patients with heart failure via machine learning

Author:

Wang Sirui,Ono Ryohei,Wu Dandan,Aoki Kaoruko,Kato Hirotoshi,Iwahana Togo,Okada Sho,Kobayashi Yoshio,Liu Hao

Abstract

AbstractPulse wave, as a message carrier in the cardiovascular system (CVS), enables inferring CVS conditions while diagnosing cardiovascular diseases (CVDs). Heart failure (HF) is a major CVD, typically requiring expensive and time-consuming treatments for health monitoring and disease deterioration; it would be an effective and patient-friendly tool to facilitate rapid and precise non-invasive evaluation of the heart’s blood-supply capability by means of powerful feature-abstraction capability of machine learning (ML) based on pulse wave, which remains untouched yet. Here we present an ML-based methodology, which is verified to accurately evaluate the blood-supply capability of patients with HF based on clinical data of 237 patients, enabling fast prediction of five representative cardiovascular function parameters comprising left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVDd), left ventricular end-systolic diameter (LVDs), left atrial dimension (LAD), and peripheral oxygen saturation (SpO2). Two ML networks were employed and optimized based on high-quality pulse wave datasets, and they were validated consistently through statistical analysis based on the summary independent-samples t-test (p > 0.05), the Bland–Altman analysis with clinical measurements, and the error-function analysis. It is proven that evaluation of the SpO2, LAD, and LVDd performance can be achieved with the maximum error < 15%. While our findings thus demonstrate the potential of pulse wave-based, non-invasive evaluation of the blood-supply capability of patients with HF, they also set the stage for further refinements in health monitoring and deterioration prevention applications.

Funder

JST SPRING

Fujii Sechiro Memorial Osaka Basic Medical Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3