Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging

Author:

Dai Meng,Li Shuying,Wang Yuanyuan,Zhang Qi,Yu JinhuaORCID

Abstract

Abstract Background Improving imaging quality is a fundamental problem in ultrasound contrast agent imaging (UCAI) research. Plane wave imaging (PWI) has been deemed as a potential method for UCAI due to its’ high frame rate and low mechanical index. High frame rate can improve the temporal resolution of UCAI. Meanwhile, low mechanical index is essential to UCAI since microbubbles can be easily broken under high mechanical index conditions. However, the clinical practice of ultrasound contrast agent plane wave imaging (UCPWI) is still limited by poor imaging quality for lack of transmit focus. The purpose of this study was to propose and validate a new post-processing method that combined with deep learning to improve the imaging quality of UCPWI. The proposed method consists of three stages: (1) first, a deep learning approach based on U-net was trained to differentiate the microbubble and tissue radio frequency (RF) signals; (2) then, to eliminate the remaining tissue RF signals, the bubble approximated wavelet transform (BAWT) combined with maximum eigenvalue threshold was employed. BAWT can enhance the UCA area brightness, and eigenvalue threshold can be set to eliminate the interference areas due to the large difference of maximum eigenvalue between UCA and tissue areas; (3) finally, the accurate microbubble imaging were obtained through eigenspace-based minimum variance (ESBMV). Results The proposed method was validated by both phantom and in vivo rabbit experiment results. Compared with UCPWI based on delay and sum (DAS), the imaging contrast-to-tissue ratio (CTR) and contrast-to-noise ratio (CNR) was improved by 21.3 dB and 10.4 dB in the phantom experiment, and the corresponding improvements were 22.3 dB and 42.8 dB in the rabbit experiment. Conclusions Our method illustrates superior imaging performance and high reproducibility, and thus is promising in improving the contrast image quality and the clinical value of UCPWI.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference34 articles.

1. Schlief R. Ultrasound contrast agents. Contrast-enhanced ultrasound of liver diseases. Milano: Springer Milan; 2003. p. 57–72.2.

2. Frinking PJ, Bouakaz A, Kirkhorn J, et al. Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol. 2000;26(6):965–75.

3. Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR Am J Roentgenol. 2012;199(2):292.

4. Frinking P J A, Cespedes I E, De Jong N. Ultrasound contrast imaging: US, US 6726629 B1; 2004.

5. Liu X, Nie F, Wang X, et al. Clinical value of real time contrast-enhanced ultrasound with low mechanical index in diagnosis of renal tumor. J Lanzhou Univ Med Sci 2015;41(3):53–7.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3