Viscoelasticity measured by shear wave elastography in a rat model of nonalcoholic fatty liver disease: comparison with dynamic mechanical analysis

Author:

Pi Zhaoke,Wang Mengke,Lin Haoming,Guo Yanrong,Chen Siping,Diao Xianfen,Xia Hui,Liu Guoqiang,Zeng Jie,Zhang Xinyu,Chen XinORCID

Abstract

Abstract Background Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming one of the most common liver diseases. Ultrasound elastography has been used for the diagnosis of NAFLD. However, clinical research on steatosis by elastography technology has mainly focused on steatosis with fibrosis or non-alcoholic steatohepatitis (NASH), while steatosis without fibrosis has been poorly studied. Moreover, the relationship between liver viscoelasticity and steatosis grade is not clear. In this study, we evaluated the degree of liver steatosis in a simple steatosis rat model using shear wave elastography (SWE). Results The viscoelasticity values of 69 rats with hepatic steatosis were measured quantitatively by SWE in vivo and validated by a dynamic mechanical analysis (DMA) test. Pathological sections were used to determine the steatosis grade for each rat. The results showed that the elasticity values µ obtained by the two methods followed the same trend, and µ is significantly correlated with liver steatosis. The Pearson’s correlation coefficients indicate that $$\mu$$ μ obtained by SWE is positively linear correlated with DMA (r = 0.628, p = 7.85 × 10–9). However, the viscosity values $$\eta$$ η obtained by SWE were relatively independent of those obtained by DMA with a correlation coefficient of − 0.01. The combined Voigt elasticity measurements have high validity in the prediction of steatosis (S0 vs. S1–S4), with an AUROC of 0.755 (95% CI 0.6175–0.8925, p < 0.01) and the optimal cutoff value was 2.08 kPa with a sensitivity of 78% and specificity of 63%. Conclusion SWE might have the feasibility to be introduced as an auxiliary technique for NAFLD patients in clinical settings. However, the viscosity results measured by SWE and DMA are significantly different, because the two methods work in different frequency bands.

Funder

Guangdong Key Laboratory of High Performance and Functional Polymer Materials

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3