miR-34a/DRP-1-mediated mitophagy participated in cisplatin-induced ototoxicity via increasing oxidative stress

Author:

Wang Haiyan,Lin Hanqing,Kang Weibiao,Huang Lingfei,Gong Sisi,Zhang Tao,Huang Xiaotong,He Feinan,Ye Yongyi,Tang Yiyang,Jia Haiying,Yang Haidi

Abstract

Abstract Purpose Cisplatin is a widely used and effective chemotherapeutic agent for most solid malignant tumors. However, cisplatin-induced ototoxicity is a common adverse effect that limits the therapeutic efficacy of tumors in the clinic. To date, the specific mechanism of ototoxicity has not been fully elucidated, and the management of cisplatin-induced ototoxicity is also an urgent challenge. Recently, some authors believed that miR34a and mitophagy played a role in age-related and drug-induced hearing loss. Our study aimed to explore the involvement of miR-34a/DRP-1-mediated mitophagy in cisplatin-induced ototoxicity. Methods In this study, C57BL/6 mice and HEI-OC1 cells were treated with cisplatin. MiR-34a and DRP-1 levels were analyzed by qRT‒PCR and western blotting, and mitochondrial function was assessed via oxidative stress, JC-1 and ATP content. Subsequently, we detected DRP-1 levels and observed mitochondrial function by modulating miR-34a expression in HEI-OC1 cells to determine the effect of miR-34a on DRP-1-mediated mitophagy. Results MiR-34a expression increased and DRP-1 levels decreased in C57BL/6 mice and HEI-OC1 cells treated with cisplatin, and mitochondrial dysfunction was involved in this process. Furthermore, the miR-34a mimic decreased DRP-1 expression, enhanced cisplatin-induced ototoxicity and aggravated mitochondrial dysfunction. We further verified that the miR-34a inhibitor increased DRP-1 expression, partially protected against cisplatin-induced ototoxicity and improved mitochondrial function. Conclusion MiR-34a/DRP-1-mediated mitophagy was related to cisplatin-induced ototoxicity and might be a novel target for investigating the treatment and protection of cisplatin-induced ototoxicity.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3