Determination of the latent geometry of atorvastatin pharmacokinetics by transfer entropy to identify bottlenecks

Author:

Lecca Paola,Re Angela

Abstract

Abstract Background In mathematics, a physical network (e.g. biological network, social network, IT network, communication network) is usually represented by a graph. The determination of the metric space (also referred to as latent geometry) of the graph and the disposition of its nodes on it provide important information on the reaction propensity and consequently on the possible presence of bottlenecks in a system of interacting molecules, such as it happens in pharmacokinetics. To determine the latent geometry and the coordinates of nodes, it is necessary to have the dissimilarity or distance matrix of the network, an input that is not always easy to measure in experiments. Results The main result of this study is the mathematical and computational procedure for determining the distance/dissimilarity matrix between nodes and for identifying the latent network geometry from experimental time series of node concentrations. Specifically, we show how this matrix can be calculated from the transfer entropy between nodes, which is a measure of the flow of information between nodes and thus indirectly of the reaction propensity between them. We implemented a procedure of spectral graph embedding to embed the distance/dissimilarity matrix in flat and curved metric spaces, and consequently to determine the optimal latent geometry of the network. The distances between nodes in the metric space describing the latent geometry can be analyzed to identify bottlenecks in the reaction system. As a case study for this procedure, we consider the pharmacokinetics of atorvastatin, as described by recent studies and experimental time data. Conclusions The method of determining distances between nodes from temporal measurements of node concentrations through the calculation of transfer entropy makes it possible to incorporate the information of kinetics (inherent in the time series) in the construction of the distance/dissimilarity matrix, and, consequently, in the determination of the network latent geometry, a characterisation of the network itself that is intimately connected to its dynamics, but which has so far been scarcely investigated and taken into account. The results on the case study of the pharmacokinetics of atorvastatin corroborate the usability and reliability of the method within certain limits of the experimental errors on the data.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3