In diabetic male Wistar rats, quercetin-conjugated superparamagnetic iron oxide nanoparticles have an effect on the SIRT1/p66Shc-mediated pathway related to cognitive impairment

Author:

Chamgordani Mahnaz Karami,Bardestani Akram,Ebrahimpour Shiva,Esmaeili Abolghasem

Abstract

Abstract Background Quercetin (QC) possesses a variety of health-promoting effects in pure and in conjugation with nanoparticles. Since the mRNA-SIRT1/p66Shc pathway and microRNAs (miRNAs) are implicated in the oxidative process, we aimed to compare the effects of QC and QC-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) on this pathway. Methods Through the use of the chemical coprecipitation technique (CPT), SPIONs were synthesized, coated with dextran, and conjugated with quercetin. Adult male Wistar rats were given intraperitoneal injections of streptozotocin to look for signs of type 1 diabetes (T1D). The animals were randomized into five groups: the control group got deionized water (DI), free QC solution (25 mg/kg), SPIONs (25 mg/kg), and QCSPIONs (25 mg/kg), and all groups received repeat doses administered orally over 35 days. Real-time quantitative PCR was used to assess the levels of miR-34a, let-7a-p5, SIRT1, p66Shc, CASP3, and PARP1 expression in the hippocampus of diabetic rats. Results In silico investigations identified p66Shc, CASP3, and PARP1 as targets of let-7a-5p and miR-34a as possible regulators of SIRT1 genes. The outcomes demonstrated that diabetes elevated miR-34a, p66Shc, CASP3, and PARP1 and downregulated let-7a-5p and SIRT1 expression. In contrast to the diabetic group, QCSPIONs boosted let-7a-5p expression levels and consequently lowered p66Shc, CASP3, and PARP1 expression levels. QCSPIONs also reduced miR-34a expression, which led to an upsurge in SIRT1 expression. Conclusion Our results suggest that QCSPIONs can regulate the SIRT1/p66Shc-mediated signaling pathway and can be considered a promising candidate for ameliorating the complications of diabetes.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3