Hybrid modeling: towards the next level of scientific computing in engineering

Author:

Kurz StefanORCID,De Gersem HerbertORCID,Galetzka ArminORCID,Klaedtke Andreas,Liebsch Melvin,Loukrezis DimitriosORCID,Russenschuck Stephan,Schmidt Manuel

Abstract

AbstractThe integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modeling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. Such hybrid models combine first principle-based models with data-based models into a joint architecture. This paper will give some background, explain trends and showcase recent achievements from an applied mathematics and industrial perspective. Examples include characterization of superconducting accelerator magnets by blending data with physics, data-driven magnetostatic field simulation without an explicit model of the constitutive law, and Bayesian free-shape optimization of a trace pair with bend on a printed circuit board.

Funder

Deutsche Forschungsgemeinschaft

BMBF

Robert Bosch GmbH

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference45 articles.

1. Anglada JR, Arpaia P, Buzio M, Pentella M, Petrone C. Characterization of magnetic steels for the FCC-ee magnet prototypes. In: 2020 IEEE international instrumentation and measurement technology conference (I2MTC). 2020. p. 1–6.

2. Bardsley JM. Computational uncertainty quantification for inverse problems. vol. 19. Philadelphia: SIAM; 2018.

3. Bishop CM. Pattern recognition and machine learning. Berlin: Springer; 2006.

4. Conti S, Müller S, Ortiz M. Data-driven problems in elasticity. Arch Ration Mech Anal. 2018;229(1):79–123.

5. Coveney PV, Dougherty ER, Highfield RR. Big data need big theory too. Philos Trans R Soc A, Math Phys Eng Sci. 2016;374(2080):20160153.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3