Modeling the influence of livestock grazing pressure on grassland bird distributions

Author:

Fern Rachel R.ORCID,Morrison Michael L.,Grant William E.,Wang Hsiaohsuan,Campbell Tyler A.

Abstract

Abstract Background The influence of vegetative changes due to livestock grazing on grassland birds is well-recognized because these birds are heavily influenced by vegetative structure. Traditionally, species distribution models (SDMs) use direct variables, resources that the animal consumes or requires to persist in an area (e.g., water) to define and project a species’ niche and distribution. Indirect variables, which are features the animal does not consume or require for persistence but with which it may still interact, are often excluded. Our objective was to improve the traditional SDMs projecting the distribution of three summer resident South Texas grassland birds (Northern Bobwhite Colinus virginianus, Eastern Meadowlark Sturnella magna, and Cassin’s Sparrow Peucaea cassinii) by incorporating livestock grazing pressure, an indirect variable, into five SDM algorithms: BioClim, generalized linear model, MaxEnt, boosted regression tree, and random forest. We collected data from the Coloraditas Grazing Research and Demonstration Area (CGRDA), a 7684-ha area located on the San Antonio Viejo Ranch (SAV) in South Texas. We used several relevant environmental characteristics to build SDMs and compared model performance (AUC and TSS) with and without grazing pressure as an indirect variable. Results Machine learning models (MaxEnt and random forest) had the highest predictive performance for all species, with random forest being the most consistent for each analysis. BioClim and generalized linear model remained constant or only marginally improved with the addition of the grazing pressure. Conclusions Our findings suggest that model selection for SDM should include consideration of species prevalence, and machine-learning algorithms should be preferred when the target species is of low or unknown prevalence. Further, livestock grazing has measurable influence on grassland bird species’ distributions and should be included in SDMs as an indirect variable in addition to associated vegetative changes.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3