Bioinformatics analysis of potential key genes and pathways in neonatal necrotizing enterocolitis

Author:

Liu Xuexiu,Zhang Xianhong,Li Luquan,Wang Jianhui,Chen Yanhan,Wu LipingORCID

Abstract

Abstract Objective To detect differentially expressed genes in patients with neonatal necrotizing enterocolitis (NEC) by bioinformatics methods and to provide new ideas and research directions for the prevention, early diagnosis and treatment of NEC. Methods Gene chip data were downloaded from the Gene Expression Omnibus database. The genes that were differentially expressed in NEC compared with normal intestinal tissues were screened with GEO2R. The functions, pathway enrichment and protein interactions of these genes were analyzed with DAVID and STRING. Then, the core network genes and significant protein interaction modules were detected using Cytoscape software. Results Overall, a total of 236 differentially expressed genes were detected, including 225 upregulated genes and 11 downregulated genes, and GO and KEGG enrichment analyses were performed. The results indicated that the upregulated differentially expressed genes were related to the dimerization activity of proteins, while the downregulated differentially expressed genes were related to the activity of cholesterol transporters. KEGG enrichment analysis revealed that the differentially expressed genes were significantly concentrated in metabolism, fat digestion and absorption pathways. Through STRING analysis, 9 key genes in the protein network interaction map were identified: EPCAM, CDH1, CFTR, IL-6, APOB, APOC3, APOA4, SLC2A and NR1H4. Conclusion Metabolic pathways and biological processes may play important roles in the development of NEC. The screening of possible core targets by bioinformatics is helpful in clarifying the pathogenesis of NEC at the gene level and in providing references for further research.

Funder

Chongqing Science and Technology Commission

Program for Youth Innovation in Future Medicine, Chongqing Medical University (W0028)

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3