Abstract
Abstract
Background
The dramatic increase in greenhouse gas (GHG) emissions, which causes serious global environmental issues and severe climate changes, has become a global problem of concern in recent decades. Currently, native and/or non-native C1-utilizing microbes have been modified to be able to effectively convert C1-gases (biogas, natural gas, and CO2) into isobutanol via biological routes. Even though the current experimental results are satisfactory in lab-scale research, the techno-economic feasibility of C1 gas-derived isobutanol production at the industrial scale still needs to be analyzed and evaluated, which will be essential for the future industrialization of C1-gas bioconversion. Therefore, techno-economic analyses were conducted in this study with comparisons of capital cost (CAPEX), operating cost (OPEX), and minimum isobutanol selling price (MISP) derived from biogas (scenario #1), natural gas (scenario #2), and CO2 (scenario #3) with systematic economic assessment.
Results
By calculating capital investments and necessary expenses, the highest CAPEX ($317 MM) and OPEX ($67 MM) were projected in scenario #1 and scenario #2, respectively. Because of the lower CAPEX and OPEX from scenario #3, the results revealed that bioconversion of CO2 into isobutanol temporally exhibited the best economic performance with an MISP of $1.38/kg isobutanol. Furthermore, a single sensitivity analysis with nine different parameters was carried out for the production of CO2-derived isobutanol. The annual plant capacity, gas utilization rate, and substrate cost are the three most important economic-driving forces on the MISP of CO2-derived isobutanol. Finally, a multiple-point sensitivity analysis considering all five parameters simultaneously was performed using ideal targets, which presented the lowest MISP of $0.99/kg in a long-term case study.
Conclusions
This study provides a comprehensive assessment of the bioconversion of C1-gases into isobutanol in terms of the bioprocess design, mass/energy calculation, capital investment, operating expense, sensitivity analysis, and minimum selling price. Compared with isobutanol derived from biogas and natural gas, the CO2-based isobutanol showed better economic feasibility. A market competitive isobutanol derived from CO2 is predicable with lower CO2 cost, better isobutanol titer, and higher annual capacity. This study will help researchers and decision-makers explore innovative and effective approaches to neutralizing GHGs and focus on key economic-driving forces to improve techno-economic performance.
Funder
National Key R&D Programs of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献