Piezo-tolerant natural gas-producing microbes under accumulating pCO2

Author:

Lindeboom Ralph E. F.,Shin Seung Gu,Weijma Jan,van Lier Jules B.,Plugge Caroline M.

Abstract

Abstract Background It is known that a part of natural gas is produced by biogenic degradation of organic matter, but the microbial pathways resulting in the formation of pressurized gas fields remain unknown. Autogeneration of biogas pressure of up to 20 bar has been shown to improve the quality of biogas to the level of biogenic natural gas as the fraction of CO2 decreased. Still, the pCO2 is higher compared to atmospheric digestion and this may affect the process in several ways. In this work, we investigated the effect of elevated pCO2 of up to 0.5 MPa on Gibbs free energy, microbial community composition and substrate utilization kinetics in autogenerative high-pressure digestion. Results In this study, biogas pressure (up to 2.0 MPa) was batch-wise autogenerated for 268 days at 303 K in an 8-L bioreactor, resulting in a population dominated by archaeal Methanosaeta concilii, Methanobacterium formicicum and Mtb. beijingense and bacterial Kosmotoga-like (31% of total bacterial species), Propioniferax-like (25%) and Treponema-like (12%) species. Related microorganisms have also been detected in gas, oil and abandoned coal-bed reservoirs, where elevated pressure prevails. After 107 days autogeneration of biogas pressure up to 0.50 MPa of pCO2, propionate accumulated whilst CH4 formation declined. Alongside the Propioniferax-like organism, a putative propionate producer, increased in relative abundance in the period of propionate accumulation. Complementary experiments showed that specific propionate conversion rates decreased linearly from 30.3 mg g−1 VSadded day−1 by more than 90% to 2.2 mg g−1 VSadded day−1 after elevating pCO2 from 0.10 to 0.50 MPa. Neither thermodynamic limitations, especially due to elevated pH2, nor pH inhibition could sufficiently explain this phenomenon. The reduced propionate conversion could therefore be attributed to reversible CO2-toxicity. Conclusions The results of this study suggest a generic role of the detected bacterial and archaeal species in biogenic methane formation at elevated pressure. The propionate conversion rate and subsequent methane production rate were inhibited by up to 90% by the accumulating pCO2 up to 0.5 MPa in the pressure reactor, which opens opportunities for steering carboxylate production using reversible CO2-toxicity in mixed-culture microbial electrosynthesis and fermentation.

Funder

Agentschap NL

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Reference70 articles.

1. Collett TS. Energy resource potential of natural gas hydrates. Am Assoc Pet Geol Bull. 2002;86:1971–92.

2. Kinnaman TC. The economic impact of shale gas extraction: a review of existing studies. Ecol Econ. 2011;70:1243–9.

3. Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M. Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci. 2011;39:617–56.

4. Wellinger A, Lindberg A. Biogas upgrading and utilisation. In: Bioenergy task 24: energy from biological conversion of organic waste. International Energy Agency; 2001. http://www.ieabioenergy.com.

5. Rice DD, Claypool GE. Generation, accumulation, and resource potential of biogenic gas. AAPG Bull. 1981;65:5–25.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3