Exploring the cellulolytic and hemicellulolytic activities of manganese peroxidase for lignocellulose deconstruction

Author:

Liu Xiaoqing,Ding Sunjia,Gao Fang,Wang Yaru,Taherzadeh Mohammad J.,Wang Yuan,Qin Xing,Wang Xiaolu,Luo Huiying,Yao Bin,Huang Huoqing,Tu Tao

Abstract

Abstract Background A cost-effective pretreatment and saccharification process is a necessary prerequisite for utilizing lignocellulosic biomass (LCB) in biofuel and biomaterials production. Utilizing a multifunctional enzyme with both pretreatment and saccharification functions in a single step for simultaneous biological pretreatment and saccharification process (SPS) will be a green method of low cost and high efficiency. Manganese peroxidase (MnP, EC 1.11.1.13), a well-known lignin-degrading peroxidase, is generally preferred for the biological pretreatment of biomass. However, exploring the role and performance of MnP in LCB conversion will promote the application of MnP for lignocellulose-based biorefineries. Results In this study, we explored the ability of an MnP from Moniliophthora roreri, MrMnP, in LCB degradation. With Mn2+ and H2O2, MrMnP decomposed 5.0 g/L carboxymethyl cellulose to 0.14 mM of reducing sugar with a conversion yield of 5.0 mg/g, including 40 μM cellobiose, 70 μM cellotriose, 20 μM cellotetraose, and 10 μM cellohexaose, and degraded 1.0 g/L mannohexaose to 0.33 μM mannose, 4.08 μM mannotriose, and 4.35 μM mannopentaose. Meanwhile, MrMnP decomposed 5.0 g/L lichenan to 0.85 mM of reducing sugar with a conversion yield of 30.6 mg/g, including 10 μM cellotriose, 20 μM cellotetraose, and 80 μM cellohexose independently of Mn2+ and H2O2. Moreover, the versatility of MrMnP in LCB deconstruction was further verified by decomposing locust bean gum and wheat bran into reducing sugars with a conversion yield of 54.4 mg/g and 29.5 mg/g, respectively, including oligosaccharides such as di- and tri-saccharides. The catalytic mechanism underlying MrMnP degraded lignocellulose was proposed as that with H2O2, MrMnP oxidizes Mn2+ to Mn3+. Subsequently, it forms a complex with malonate, facilitating the degradation of CMC and mannohexaose into reducing sugars. Without H2O2, MrMnP directly oxidizes malonate to hydroperoxyl acetic acid radical to form compound I, which then attacks the glucosidic bond of lichenan. Conclusion This study identified a new function of MrMnP in the hydrolysis of cellulose and hemicellulose, suggesting that MrMnP exhibits its versatility in the pretreatment and saccharification of LCB. The results will lead to an in-depth understanding of biocatalytic saccharification and contribute to forming new enzymatic systems for using lignocellulose resources to produce sustainable and economically viable products and the long-term development of biorefinery, thereby increasing the productivity of LCB as a green resource.

Funder

China Agriculture Research System of MOF and MARA

National Key Research and Development Program of China

State Key Laboratory of Animal Nutrition Project

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3