Microfluidic screening and genomic mutation identification for enhancing cellulase production in Pichia pastoris

Author:

Yuan Huiling,Zhou Ying,Lin Yuping,Tu Ran,Guo Yufeng,Zhang Yuanyuan,Wang Qinhong

Abstract

Abstract Background Pichia pastoris is a widely used host organism for heterologous production of industrial proteins, such as cellulases. Although great progress has been achieved in improving protein expression in P. pastoris, the potential of the P. pastoris expression system has not been fully explored due to unknown genomic impact factors. Recently, whole-cell directed evolution, employing iterative rounds of genome-wide diversity generation and high-throughput screening (HTS), has been considered to be a promising strategy in strain improvement at the genome level. Results In this study, whole-cell directed evolution of P. pastoris, employing atmospheric and room temperature plasma (ARTP) mutagenesis and droplet-based microfluidic HTS, was developed to improve heterogenous cellulase production. The droplet-based microfluidic platform based on a cellulase-catalyzed reaction of releasing fluorescence was established to be suitable for methanol-grown P. pastoris. The validation experiment showed a positive sorting efficiency of 94.4% at a sorting rate of 300 droplets per second. After five rounds of iterative ARTP mutagenesis and microfluidic screening, the best mutant strain was obtained and exhibited the cellulase activity of 11,110 ± 523 U/mL, an approximately twofold increase compared to the starting strain. Whole-genome resequencing analysis further uncovered three accumulated genomic alterations in coding region. The effects of point mutations and mutant genes on cellulase production were verified using reconstruction of point mutations and gene deletions. Intriguingly, the point mutation Rsc1G22V was observed in all the top-performing producers selected from each round, and gene deletion analysis confirmed that Rsc1, a component of the RSC chromatin remodeling complex, might play an important role in cellulase production. Conclusions We established a droplet-based microfluidic HTS system, thereby facilitating whole-cell directed evolution of P. pastoris for enhancing cellulase production, and meanwhile identified genomic alterations by whole-genome resequencing and genetic validation. Our approaches and findings would provide guides to accelerate whole-cell directed evolution of host strains and enzymes of high industrial interest.

Funder

National Key Research and Development Program of China

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project

Instrument Developing Project of the Chinese Academy of Sciences

Industrial Synthetic Biology Innovation Team support funding

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3