d-Lactic acid production from agricultural residues by membrane integrated continuous fermentation coupled with B vitamin supplementation

Author:

Ma Kedong,Cui Yubo,Zhao Ke,Yang Yuxuan,Wang Yidan,Hu Guoquan,He Mingxiong

Abstract

Abstract Background d-Lactic acid played an important role in the establishment of PLA as a substitute for petrochemical plastics. But, so far, the d-lactic acid production was limited in only pilot scale, which was definitely unable to meet the fast growing market demand. To achieve industrial scale d-lactic acid production, the cost-associated problems such as high-cost feedstock, expensive nutrient sources and fermentation technology need to be resolved to establish an economical fermentation process. Results In the present study, the combined effect of B vitamin supplementation and membrane integrated continuous fermentation on d-lactic acid production from agricultural lignocellulosic biomass by Lactobacillus delbrueckii was investigated. The results indicated the specific addition of vitamins B1, B2, B3 and B5 (VB1, VB2, VB3 and VB5) could reduce the yeast extract (YE) addition from 10 to 3 g/l without obvious influence on fermentation efficiency. By employing cell recycling system in 350 h continuous fermentation with B vitamin supplementation, YE addition was further reduced to 0.5 g/l, which resulted in nutrient source cost reduction of 86%. A maximum d-lactate productivity of 18.56 g/l/h and optical purity of 99.5% were achieved and higher than most recent reports. Conclusion These findings suggested the novel fermentation strategy proposed could effectively reduce the production cost and improve fermentation efficiency, thus exhibiting great potential in promoting industrial scale d-lactic acid production from lignocellulosic biomass. Graphical Abstract

Funder

Natural Science Foundation of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3